Fichier PDF

Partagez, hébergez et archivez facilement vos documents au format PDF

Partager un fichier Mes fichiers Boite à outils PDF Recherche Aide Contact



appsespase1sm .pdf



Nom original: appsespase1sm.pdf
Titre: Microsoft Word - app ps.doc
Auteur: maison

Ce document au format PDF 1.3 a été généré par PScript5.dll Version 5.2 / Acrobat Distiller 5.0 (Windows), et a été envoyé sur fichier-pdf.fr le 06/04/2011 à 12:00, depuis l'adresse IP 41.248.x.x. La présente page de téléchargement du fichier a été vue 1816 fois.
Taille du document: 263 Ko (8 pages).
Confidentialité: fichier public




Télécharger le fichier (PDF)









Aperçu du document


‫ﺗﻄﺒﻴﻘﺎت اﻟﺠﺪاء اﻟﺴﻠﻤﻲ ﻓﻲ اﻟﻔﻀﺎء‬
‫‪ -I‬اﻟﻤﺴﺘﻘﻴﻤﺎت و اﻟﻤﺴﺘﻮﻳﺎت ﻓﻲ اﻟﻔﻀﺎء‬
‫‪ -1‬ﺗﻌﺎﻣﺪ اﻟﻤﺴﺘﻘﻴﻤﺎت و اﻟﻤﺴﺘﻮﻳﺎت ﻓﻲ اﻟﻔﻀﺎء‬
‫أ‪ -‬ﺗﻌﺎﻣﺪ ﻣﺴﺘﻘﻴﻤﻴﻦ‬
‫ﻟﻴﻜﻦ )‪ (D1‬و )‪ (D2‬ﻣﺴﺘﻘﻴﻤــﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ﻣﻮﺟﻬﻴﻦ ﺑﺎﻟﻤﺘﺠﻬﺘﻴﻦ ‪ u 1‬و ‪ u 2‬ﻋﻠﻰ اﻟﺘﻮاﻟﻲ‬
‫‪( D1 ) ⊥ ( D2 ) ⇔ u1 ⋅ u2 = 0‬‬
‫ب‪ -‬ﺗﻌﺎﻣﺪ ﻣﺴﺘﻘﻴﻢ و ﻣﺴﺘﻮى‬
‫ﺧﺎﺻﻴﺔ‬
‫ﻟﻴﻜﻦ )‪ (P‬ﻣﺴﺘﻮى ﻣﻮﺟﻪ ﺑﺎﻟﻤﺘﺠﻬﺘﻴﻦ ‪ u 1‬و ‪ u 2‬و )‪ (D‬ﻣﺴﺘﻘﻴﻢ ﻣﻮﺟﻪ ﺑﺎﻟﻤﺘﺠﻬﺔ ‪u 3‬‬
‫‪u2 ⊥ u3‬‬

‫و‬

‫‪u2 ⋅ u3 = 0‬‬

‫و‬

‫‪( D ) ⊥ ( P ) ⇔ u1 ⊥ u3‬‬
‫‪( D ) ⊥ ( P ) ⇔ u1 ⋅ u3 = 0‬‬

‫ج‪ -‬ﻣﻼﺣﻈﺎت واﺻﻄﻼﺣﺎت‬
‫* اﻟﻤﺘﺠﻬﺔ ‪ u‬اﻟﻤﻮﺟﻬﺔ ﻟﻤﺴﺘﻘﻴﻢ )‪ (D‬اﻟﻌﻤﻮدي ﻋﻠﻰ ﻣﺴﺘﻮى )‪ (P‬ﺗﺴﻤﻰ ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪.( P‬‬
‫* اذا آﺎﻧﺖ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻤﺴﺘﻮى )‪ (P‬ﻓﺎن آﻞ ﻣﺘﺠﻬﺔ ‪ v‬ﻣﺴﺘﻘﻴﻤﻴﺔ ﻣﻊ ‪ u‬ﺗﻜﻮن ﻣﻨﻈﻤﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪(P‬‬
‫* اذا آﺎﻧﺖ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻤﺴﺘﻮى )‪ (P‬و ‪ v‬ﻣﻨﻈﻤﻴﺔ ﻟﻤﺴــﺘﻮى )'‪ (P‬وآﺎﻧﺘﺎ ‪ u‬و ‪ v‬ﻣﺴﺘﻘﻴﻤﻴﺘﻴﻦ ﻓﺎن )‪ (P‬و)'‪( P‬‬
‫ﻣﺘﻮازﻳﺎن‬
‫* إذا آﺎن ) ‪ ( A; B ) ∈ ( P‬و ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻤﺴﺘﻮى )‪ (P‬ﻓﺎن‬
‫‪2‬‬

‫‪u ⊥ AB‬‬

‫ﺗﻤﺮﻳﻦ ﻓﻲ اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ‪.‬م‪(O ; i ; j ; k ) .‬‬
‫ﺣﺪد ﺗﻤﺜﻴﻞ ﺑﺎراﻣﺘﺮي ﻟﻠﻤﺴﺘﻘﻴﻢ )‪ (D‬اﻟﻤﺎر ﻣﻦ)‪ A(-1; 2 0‬و اﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى )‪ (P‬اﻟﻤﻮﺟﻪ ﺑـﺎﻟﻤﺘﺠﻬﺘﻴﻦ‬
‫)‪ u(1;−1;1‬و )‪v(2;1;1‬‬
‫ﺗﻤﺮﻳﻦ‬

‫ﻓﻲ اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ‪.‬م‪ (O ; i ; j ; k ) .‬ﻧﻌﺘﺒﺮ اﻟﻤﺴﺘﻮى)‪ (P‬اﻟﺬي ﻣﻌﺎدﻟﺘﻪ ‪ax-2y+z-2=0‬‬
‫و اﻟﻤﺴﺘﻘﻴﻢ )‪ (D‬ﺗﻤﺜﻴﻠﻪ ﺑﺎراﻣﺘﺮي‬

‫‪t ∈ IR‬‬

‫‪ x=2t‬‬
‫‪‬‬
‫‪ y =1+ 3 t‬‬
‫‪ z = − 2 + bt‬‬

‫‪ -1‬ﺣﺪد ﻣﺘﺠﻬﺘﻴﻦ ﻣﻮﺟﻬﺘﻴﻦ ﻟﻠﻤﺴﺘﻮى )‪(P‬‬
‫‪ -2‬ﺣﺪد‪ a‬و‪ b‬ﻟﻜﻲ ﻳﻜﻮن ) ‪(D )⊥(P‬‬
‫د‪ -‬ﺗﻌﺎﻣﺪ ﻣﺴﺘﻮﻳﻴﻦ‬
‫ﺗﺬآﻴﺮ ﻳﻜﻮن ﻣﺴﺘﻮﻳﺎن ﻣﺘﻌﺎﻣﺪﻳﻦ اذا و ﻓﻘﻂ اذا اﺷﺘﻤﻞ أﺣﺪهﻤﺎ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ ﻋﻤﻮدي‬
‫ﻋﻠﻰ اﻟﻤﺴﺘﻮى اﻵﺧﺮ‪.‬‬
‫ﺧﺎﺻﻴﺔ‬
‫ﻟﻴﻜﻦ )‪ (P‬و )'‪ (P‬ﻣﺴﺘﻮﻳﻴﻦ ﻣﻦ اﻟﻔﻀﺎء و ‪ u‬و ‪ v‬ﻣﺘﺠﻬﺘــــــــــﻴﻦ ﻣﻨﻈﻤﻴﺘﻴﻦ ﻟﻬﻤﺎ ﻋﻠﻰ اﻟﺘﻮاﻟﻲ‬
‫) ‪ (P')⊥(P‬اذا وﻓﻘﻂ اذا آﺎن ‪u ⊥v‬‬

‫‪ -3‬ﻣﻌﺎدﻟﺔ ﻣﺴﺘﻮى ﻣﺤﺪد ﺑﻨﻘﻄﺔ و ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬
‫‪ .a‬ﻣﺴﺘﻮى ﻣﺤﺪد ﺑﻨﻘﻄﺔ و ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬
‫ﻣﺒﺮهﻨﺔ‬
‫ﻟﺘﻜﻦ ‪ u‬ﻣﺘﺠﻬﺔ ﻏﻴﺮ ﻣﻨﻌﺪﻣﺔ و ‪ A‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء‬
‫* اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ‪ A‬و اﻟﻤﺘﺠﻬﺔ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻪ هﻮ ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ‪ M‬ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ ‪AM ⋅ u = 0‬‬

‫‪Moustaouli Mohamed‬‬

‫‪1‬‬

‫‪http://arabmaths.ift.fr‬‬

‫* ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ‪ M‬ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ ‪ AM ⋅ u = 0‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ‪ A‬و اﻟﻤﺘﺠﻬﺔ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻪ‬
‫‪ .b‬ﻣﻌﺎدﻟﺔ ﻣﺴﺘﻮى ﻣﺤﺪد ﺑﻨﻘﻄﺔ و ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬
‫ﺧﺎﺻﻴﺔ‬
‫* آﻞ ﻣﺴﺘﻮى )‪ (P‬ﻓﻲ اﻟﻔﻀﺎء و ) ‪ u(a;b;c‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ ﻳﻘﺒﻞ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻣﻦ‬
‫ﻧﻮع ‪ax + by + cz + d = 0‬‬
‫* آﻞ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻣﻦ ﻧﻮع ‪ ax + by + cz + d = 0‬ﺣﻴﺚ ) ‪ ( a; b ; c ) ≠ ( 0;0;0‬هﻲ ﻣﻌﺎدﻟﺔ ﻣﺴﺘﻮى‬

‫)‪ (P‬ﻓﻲ اﻟﻔﻀﺎء ﺑﺤﻴﺚ ) ‪ u(a;b;c‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬
‫*ﻓﻲ اﻟﻔﻀﺎء ﻣﻌﺎدﻟﺔ اﻟﻤﺴﺘﻮى ) ‪ ( P‬اﻟﻤﺎر ﻣﻦ ) ‪ A ( x0 ; y0 ; z0‬و اﻟﻤﺘﺠﻬﺔ ) ‪ u(a;b;c‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ هﻲ‪:‬‬
‫‪a ( x − x0 ) + b ( y − y0 ) + c ( z − z0 ) = 0‬‬

‫‪(4‬‬

‫ﻣﺒﺮهﻨﺔ‬
‫ﻟﺘﻜﻦ ‪ u‬ﻣﺘﺠﻬﺔ ﻏﻴﺮ ﻣﻨﻌﺪﻣﺔ و ‪ A‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء و ‪ k‬ﻋﺪدا ﺣﻘﻴﻘﻴﺎ‬
‫ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ‪ M‬ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ ‪ AM ⋅ u = k‬هﻲ اﻟﻤﺴﺘﻮى ) ‪ ( P‬اﻟﻌﻤﻮدي ﻋﻠﻰ ) ‪ D ( A; u‬ﻓﻲ اﻟﻨﻘﻄﺔ ‪H‬‬
‫ﺣﻴﺚ‬

‫‪k‬‬
‫‪AB‬‬

‫= ‪AH‬‬

‫; ‪u = AB‬‬

‫ﺗﻤﺮﻳﻦ‬

‫‪ x+y-2z+1=0‬‬
‫‪(P) : 2x-y+3z+1=0‬‬
‫ﻧﻌﺘﺒﺮ‬
‫‪(D): ‬‬
‫‪ x-y+z-2=0‬‬
‫‪ -1‬ﺣﺪد ﻣﺘﺠﻬﺔ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ )‪ (P‬وﻧﻘﻄﺔ ﻣﻨﻪ‪.‬‬
‫‪ -2‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ)‪ A (2;0;3‬و )‪ n(1,2,1‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‪.‬‬
‫‪ -3‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ)‪ A' (2;0;3‬واﻟﻌﻤﻮدي ﻋﻠﻰ )‪(D‬‬
‫‪ -4‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ)‪ A (2;0;3‬و اﻟﻤﻮازي ﻟـ )‪(P‬‬
‫‪ -6‬دراﺳﺔ اﻻوﺿﺎع اﻟﻨﺴﺒﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻤﺎت و اﻟﻤﺴﺘﻮﻳﺎت ﻓﻲ اﻟﻔﻀﺎء‬
‫أ‪ -‬اﻷوﺿﺎع اﻟﻨﺴﺒﻴﺔ ﻟﻤﺴﺘﻮﻳﻴﻦ ﻓﻲ اﻟﻔﻀﺎء‬
‫)‪ (P‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ ‪ A‬و ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ )'‪ (P‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ '‪ A‬و ‪ v‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬
‫اﻟﺤﺎﻟﺔ ‪ u 1‬و ‪ v‬ﻣﺴﺘﻘﻴﻤﻴﺘﺎن‬
‫إذا آﺎن)'‪ A ∈ (P‬أو)‪ A' ∈ (P‬ﻓﺎن )‪(P') = (P‬‬
‫إذا آﺎن)'‪ A ∉ (P‬و)‪ A' ∉ (P‬ﻓﺎن )‪ (P‬و )'‪ (P‬ﻣﺘﻮازﻳﺎن ﻗﻄﻌﺎ‪.‬‬
‫اﻟﺤﺎﻟﺔ ‪ u 2‬و ‪ v‬ﻏﻴﺮ ﻣﺴﺘﻘﻴﻤﻴﺘﻴﻦ‬
‫ ‪(P')⊥(P ) ⇔ u ⊥ v‬‬‫ اذا آﺎن ‪ v‬و ‪ u‬ﻏﻴﺮ ﻣﺘﻌﺎﻣﺪﺗﻴﻦ ﻓﺎن )‪ (P‬و )'‪ (P‬ﻣﺘﻘﺎﻃﻌﺎن‪.‬‬‫ب‪ -‬اﻷوﺿﺎع اﻟﻨﺴﺒﻴﺔ ﻟﻤﺴﺘﻘﻴﻢ وﻣﺴﺘﻮى ﻓﻲ اﻟﻔﻀﺎء‬
‫)‪ (P‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ ‪ A‬و ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ )‪ (D‬اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﺎر ﻣﻦ '‪ A‬و ‪ v‬ﻣﻮﺟﻬﺔ ﻟﻪ‬
‫اﻟﺤﺎﻟﺔ ‪ 1‬إذا آﺎن ‪ u‬و ‪ v‬ﻣﺴﺘﻘﻴﻤﻴﺘﻴﻦ ﻓﺎن ) ‪(D )⊥(P‬‬
‫اﻟﺤﺎﻟﺔ ‪ u 2‬و ‪ v‬ﻏﻴﺮ ﻣﺴﺘﻘﻴﻤﻴﺘﻴﻦ‬
‫ ‪ (P) ⇔ u ⊥ v‬و )‪ (D‬ﻣﺘﻮازﻳﺎن‬‫ اذا آﺎن ‪ u ⊥ v‬ﻓﺎن‬‫‪ -7‬ﻣﺴﺎﻓﺔ ﻧﻘﻄﺔ ﻋﻦ ﻣﺴﺘﻮى‬
‫ﻧﺸﺎط‬
‫اﻟﻔﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ‬

‫)‪ (D‬ﻳﺨﺘﺮق )‪(P‬‬

‫)‬

‫(‬

‫‪ ( P ) . O; i ; j ; k‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ ) ‪B ( xB ; yB ; z B‬‬

‫و ) ‪ n ( a; b; c‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‪ .‬ﻟﺘﻜﻦ ) ‪ A ( x0 ; y0 ; z0‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻤﺴﺘﻮى ‪ H ،‬اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟﻠﻨﻘﻄﺔ ‪A‬‬
‫ﻋﻠﻰ ) ‪. ( P‬‬

‫أ‪ -‬أﺣﺴﺐ ‪ n ⋅ AB‬ﺑﺪﻻﻟﺔ ‪ HA‬و ‪n‬‬

‫‪Moustaouli Mohamed‬‬

‫‪2‬‬

‫‪http://arabmaths.ift.fr‬‬

‫ب‪ -‬أﺛﺒﺖ أن‬

‫‪n ⋅ AB‬‬
‫‪n‬‬

‫= ‪HA‬‬

‫د‪ -‬ﻟﻴﻜﻦ ‪ ( P ) : ax + by + cz + d = 0‬ﺣﻴﺚ‬
‫ﺑﻴﻦ أن‬

‫‪ax0 + by0 + cz0 + d‬‬
‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪a +b +c‬‬

‫) ‪( a; b; c ) ≠ ( 0;0;0‬‬

‫= ‪HA‬‬

‫‪ -1‬ﺗﻌﺮﻳﻒ و ﺧﺎﺻﻴﺔ‬
‫اﻟﻔﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ‪.‬م‪.‬م ) ‪(o;i ; j ;k‬‬
‫ﻣﺴﺎﻓﺔ ﻧﻘﻄﺔ ‪ A‬ﻋﻦ ﻣﺴﺘﻮى )‪ (P‬هﻲ اﻟﻤﺴﺎﻓﺔ ‪ AH‬ﺣﻴﺚ‪ H‬اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟـ ‪ A‬ﻋﻠﻰ)‪ (P‬ﻧﻜﺘﺐ‬
‫‪A B •u‬‬
‫= ‪ d ( A ; ( P ) ) = A H‬ﺣﻴﺚ )‪ B ∈ (P‬و ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ)‪(P‬‬
‫‪u‬‬
‫‪ -2‬ﺧﺎﺻﻴﺔ‬
‫ﻟﻴﻜﻦ )‪ (P‬ﻣﺴﺘﻮى ﻣﻌﺎدﻟﺘﻪ ‪ax + by + cz + d = 0‬‬

‫‪ax 0 + by 0 + cz 0 + d‬‬
‫‪a2 + b 2 + c 2‬‬
‫ﻣﺜﺎل‬
‫ﻟﻴﻜﻦ )‪ (P‬ﻣﺴﺘﻮى ﻣﺎر ﻣﻦ )‪ B ( 2;1;3‬و ‪u 1; −1; 2‬‬
‫ﺣﺪد‬

‫)) ‪d ( A ; ( P‬‬

‫)‬

‫(‬

‫و ) ‪ A ( x 0 ; y 0 ; z 0‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء‬

‫= )) ‪d ( A ; ( P‬‬
‫ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ ﻟﺘﻜﻦ )‪A (1;2;0‬‬

‫ﺗﻤﺮﻳﻦ‪1‬‬
‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ‪.‬‬
‫ﻧﻌﺘﺒﺮ )‪ A(1;-1;1‬و )‪ B(3;1;-1‬و )‪ (P‬اﻟﻤﺴﺘﻮى ذا اﻟﻤﻌﺎدﻟﺔ ‪ 2x-3y+2z=0‬و )‪ (D‬اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﻤﺜﻞ‬
‫‪ x = 3t‬‬
‫‪‬‬
‫ﺑﺎرا ﻣﺘﺮﻳﺎ ﺑـ‬
‫∈ ‪ x = − 2 − 3t t‬‬
‫‪ z = 2 + 4t‬‬
‫‪‬‬
‫‪ -1‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ A‬واﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ )‪(D‬‬
‫ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ A‬و ‪ B‬واﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى )‪(P‬‬
‫‪ -2‬أﺣﺴﺐ ))‪ d(A;(P‬و ))‪d(A;(D‬‬
‫‪ -3‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´´‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ B‬و اﻟﻤﻮازي ﻟﻠﻤﺴﺘﻮى )‪(P‬‬
‫ﺗﻤﺮﻳﻦ‪2‬‬
‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ‪.‬‬
‫ﻧﻌﺘﺒﺮ اﻟﻤﺴﺘﻮى)‪ (P‬ذا اﻟﻤﻌﺎدﻟﺔ ‪ 3x+2y-z-5=0‬و )‪ (D‬اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﻌﺮف ﺑـ‬

‫‪Moustaouli Mohamed‬‬

‫‪3‬‬

‫‪http://arabmaths.ift.fr‬‬

‫‪x − 2 y + z − 3 = 0‬‬
‫‪‬‬
‫‪ x− y−z+2=0‬‬
‫‪ -1‬ﺣﺪد ﺗﻤﺜﻴﻼ ﺑﺎرا ﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ )‪(D‬‬
‫ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´‪ (P‬اﻟﺬي ﻳﺘﻀﻤﻦ )‪ (D‬و اﻟﻌﻤﻮدي ﻋﻠﻰ )‪(P‬‬
‫‪II‬־ اﻟﻔﻠﻜﺔ‬

‫اﻟﻔﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ) ‪(O ; i ; j ; k‬‬

‫‪ -1‬ﻣﻌﺎدﻟﺔ ﻓﻠﻜﺔ ﻣﻌﺮﻓﺔ ﺑﻤﺮآﺰهﺎ وﺷﻌﺎﻋﻬﺎ‬
‫ﻟﺘﻜﻦ ) ‪ Ω ( a; b; c‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء )‪ (E‬و‬

‫‪*+‬‬

‫∈‪r‬‬

‫و ) ‪ S ( Ω; r‬اﻟﻔﻠﻜﺔ اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪ Ω‬و ﺷﻌﺎﻋﻬﺎ ‪r‬‬
‫ﻟﻴﻜﻦ ) ‪ M ( x; y; z‬ﻣﻦ اﻟﻔﻀﺎء )‪(E‬‬
‫‪M ∈ S ( Ω; r ) ⇔ ΩM = r 2 ⇔ ( x − a ) + ( y − b ) + ( z − c ) = r 2‬‬
‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫ﻣﺒﺮهﻨﺔ‬
‫اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ‪. o;i ; j ;k‬‬
‫ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ) ‪ S ( Ω; r‬اﻟﺘﻲ ﻣﺮآﺰهﺎ ) ‪Ω ( a; b; c‬‬

‫)‬

‫و ﺷﻌﺎﻋﻬﺎ ‪r‬‬

‫هﻲ‬

‫(‬

‫‪( x − a )2 + ( y − b )2 + ( z − c )2 = r 2‬‬

‫ﻣﻼﺣﻈﺎت و اﺻﻄﻼﺣﺎت‬
‫* إذا آﺎن ‪ A‬و ‪ B‬ﻧﻘﻄﺘﻴﻦ ﻣﻦ اﻟﻔﻠﻜﺔ )‪ S(Ω;r‬ﺣﻴﺚ ‪ Ω‬ﻣﻨﺘﺼﻒ ]‪ [A;B‬ﻓﺎن ]‪ [A;B‬ﻗﻄﺮا ﻟﻠﻔﻠﻜﺔ‬
‫* ﺗﻮﺟﺪ ﻓﻠﻜﺔ وﺣﻴﺪة أﺣﺪ أﻗﻄﺎرهﺎ ]‪ [A;B‬ﻣﺮآﺰهﺎ ‪ Ω‬ﻣﻨﺘﺼﻒ ]‪ [A;B‬و ﺷﻌﺎﻋﻬﺎ ‪r =½ AB‬‬
‫* ﻟﻠﻔﻠﻜﺔ ) ‪ S ( Ω; r‬ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻣﻦ ﺷﻜﻞ ‪ x 2 + y 2 + z 2 + ax + by + cz + d = 0‬ﺣﻴﺚ ‪ a‬و ‪ b‬و ‪ c‬و ‪d‬‬
‫أﻋﺪاد ﺣﻘﻴﻘﻴﺔ‪.‬‬
‫* اﻟﻔﻠﻜﺔ ) ‪ S ( O; r‬ﺣﻴﺚ ‪ O‬أﺻﻞ اﻟﻤﻌﻠﻢ ﻣﻌﺎدﻟﺘﻬﺎ ‪x + y + z = r‬‬
‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫ﻟﺘﻜﻦ )‪ S(Ω;r‬ﻓﻠﻜﺔ اﻟﺘﻲ ﻣﺮآﺰهﺎ )‪ Ω(a;b;c‬و ﺷﻌﺎﻋﻬﺎ ‪r‬‬
‫* اﻟﻜﺮة‬
‫اﻟﻜﺮة )‪ B(Ω;r‬اﻟﺘﻲ ﻣﺮآﺰهﺎ ) ‪ Ω ( a; b; c‬و ﺷﻌﺎﻋﻬﺎ ‪ r‬هﻲ ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ) ‪M ( x; y; z‬‬
‫ﺣﻴﺚ‬

‫‪( x − a )2 + ( y − b )2 + ( z − c )2 ≤ r 2‬‬

‫‪ -2‬ﻣﻌﺎدﻟﺔ ﻓﻠﻜﺔ ﻣﻌﺮﻓﺔ ﺑﺄﺣﺪ أﻗﻄﺎرهﺎ‬
‫‪ S‬ﻓﻠﻜﺔ أﺣﺪ اﻗﻄﺎرهﺎ ]‪[A;B‬‬
‫‪  AMB ⇔ M ∈ S‬زاوﻳﺔ ﻗﺎﺋﻤﺔ أو ‪ M=A‬أو ‪M=B‬‬
‫‪‬‬
‫‪‬‬

‫⇔ ‪MA ⋅ MB = 0‬‬
‫ﻣﺒﺮهﻨﺔ‬
‫‪ A‬و ‪ B‬ﻧﻘﻄﺘﺎن ﻣﺨﺘﻠﻔﺎن ﻓﻲ اﻟﻔﻀﺎء‬
‫ﻓﻲ اﻟﻔﻀﺎء ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ‪ M‬اﻟﺘﻲ ﺗﺤﻘﻖ ‪ MA ⋅ MB = 0‬هﻲ‬
‫ﻓﻠﻜﺔ اﻟﺘﻲ أﺣﺪ اﻗﻄﺎرهﺎ ]‪[A;B‬‬
‫ﺧﺎﺻﻴﺔ‬
‫اذا آﺎﻧﺖ )‪ A(xA;yA;zA‬و )‪ B(xB;yB;zB‬ﻧﻘﻄﺘﻴﻦ ﻣﺨﺘﻠﻔﺘﻴﻦ ﻓﺎن ﻣﻌﺎدﻟﺔ اﻟﻔﻠﻜﺔ اﻟﺘﻲ أﺣﺪ اﻗﻄﺎرهﺎ ]‪[A;B‬‬
‫‪(x-x A )(x-x B )+(y-y A )(y-y B )+(z-z A )(z-z B )=0‬‬
‫هﻲ‬
‫ﺗﻤﺮﻳﻦ‬
‫ﻓﻲ‬

‫اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ )‬

‫(‬

‫‪ ، O ; i ; j ; k‬ﻧﻌﺘﺒﺮ )‪ Ω(1;2;-1‬و )‪ A(2;1;2‬و )‪B(4;1;2‬‬

‫‪ -1‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ‪ S‬اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪ Ω‬و اﻟﻤﺎر ﻣﻦ ‪A‬‬
‫‪ -2‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ´‪ S‬اﻟﺘﻲ ﻗﻄﺮهﺎ ]‪[A;B‬‬
‫‪ -3‬دراﺳﺔ اﻟﻤﻌﺎدﻟﺔ ‪(1): x²+y²+z²+ax+by-+cz+d=0‬‬
‫‪Moustaouli Mohamed‬‬

‫‪4‬‬

‫‪http://arabmaths.ift.fr‬‬

‫ﻟﺘﻜﻦ ‪ E‬ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ) ‪ M ( x; y; z‬اﻟﺘﻲ ﺗﺤﻘﻖ اﻟﻤﻌﺎدﻟﺔ )‪(1‬‬
‫‪2‬‬

‫‪c‬‬
‫‪a 2 + b 2 + c 2 − 4d‬‬
‫=‬
‫‪‬‬
‫‪2‬‬
‫‪4‬‬
‫‪ a b c‬‬
‫ﻟﺘﻜﻦ ‪Ω  − ; − ; − ‬‬
‫‪ 2 2 2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪a ‬‬
‫‪b ‬‬
‫‪‬‬
‫‪M ∈E ⇔ x+  +y+  +z+‬‬
‫‪2 ‬‬
‫‪2 ‬‬
‫‪‬‬

‫*‪ -‬إذا آﺎن ‪ a 2 + b 2 + c 2 − 4d ≺ 0‬ﻓﺎن‪E =Ø‬‬
‫*‪ -‬اذا آﺎن ‪ a 2 + b 2 + c 2 − 4d = 0‬ﻓﺎن }‪E={Ω‬‬
‫*‪ -‬اذا آﺎن‬

‫‪0‬‬

‫‪ a 2 + b 2 + c 2 − 4d‬ﻓﺎن )‪ E=S(Ω;r‬ﺣﻴﺚ‬

‫‪a 2 + b 2 + c 2 − 4d‬‬
‫‪= r2‬‬
‫‪4‬‬

‫ﻣﺒﺮهﻨﺔ‬
‫‪ a‬و ‪ b‬و ‪ c‬و ‪ d‬أﻋﺪاد ﺣﻘﻴﻘﻴﺔ‬
‫ﺗﻜﻮن ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ )‪ M(x;y;z‬اﻟﺘﻲ ﺗﺤﻘﻖ اﻟﻤﻌﺎدﻟﺔ ‪ x 2 + y 2 + z 2 + ax + by + cz + d = 0‬ﻓﻠﻜﺔ‬

‫إذا وﻓﻘﻂ إذا آﺎن ‪a 2 + b 2 + c 2 − 4d ≥ 0‬‬
‫‪a 2 + b 2 + c 2 − 4d‬‬
‫‪ a b c‬‬
‫‪ Ω  − ; − ; − ‬ﻣﺮآﺰ هﺬﻩ اﻟﻔﻠﻜﺔ و ‪= r‬‬
‫‪2‬‬
‫‪ 2 2 2‬‬

‫ﺷﻌﺎﻋﻬﺎ‬

‫ﻣﻼﺣﻈﺔ ﻳﻤﻜﻦ اﻋﺘﺒﺎر }‪ E={Ω‬ﻓﻠﻜﺔ ﻣﺮآﺰهﺎ ‪ Ω‬و ﺷﻌﺎﻋﻬﺎ ﻣﻨﻌﺪم‬
‫ﺗﻤﺮﻳﻦ ﻧﻌﺘﺒﺮ ‪ E‬ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ )‪ M(x;y;z‬اﻟﺘﻲ ﺗﺤﻘﻖ اﻟﻤﻌﺎدﻟﺔ ‪x²+y²+z²+4x-2y -6z+5=0‬‬
‫ﺑﻴﻦ إن ‪ E‬ﻓﻠﻜﺔ ﻣﺤﺪدا ﻋﻨﺎﺻﺮهﺎ اﻟﻤﻤﻴﺰة‬
‫ﺣﻴﺚ )‪ A(2;0;-1‬و )‪B(-1;1;-1‬‬
‫ﺗﻤﺮﻳﻦ ﺣﺪد ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ‪ M‬اﻟﺘﻲ ﺗﺤﻘﻖ ‪2MA²+3MB²=16‬‬
‫‪ –4‬ﺗﻘﺎﻃﻊ ﻣﺴﺘﻮى و ﻓﻠﻜﺔ‬
‫أ‪ -‬دراﺳﺔ ﺗﻘﺎﻃﻊ ﻟﻠﻔﻠﻜﺔ )‪ S(Ω;r‬و اﻟﻤﺴﺘﻮى )‪(P‬‬
‫ﻧﻨﺴﺐ اﻟﻔﻀﺎء‪ E‬إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ )‪ ( A;u ;v ;w‬ﺣﻴﺚ ‪ A‬اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟـ ‪ Ω‬ﻋﻠﻰ اﻟﻤﺴﺘﻮى )‪(P‬‬
‫و ) ‪ ( A;u ;v‬م‪.‬م‪.‬م ﻟـ )‪(P‬‬
‫‪ w‬ﻣﺘﺠﻬﺔ واﺣﺪﻳﺔ ﻣﻮﺟﻬﺔ ﻟﻠﻤﺴﺘﻘﻴﻢ )‪(AΩ‬‬
‫‪ Ω‬ﺗﻨﺘﻤﻲ إﻟﻰ ﻣﺤﻮر اﻻﻧﺎﺳﻴﺐ وﻣﻨﻪ ﻳﻮﺟﺪ ‪ c‬ﺣﻴﺚ )‪Ω(0;0;c‬‬
‫ﻣﻌﺎدﻟﺔ اﻟﻤﺴﺘﻮى )‪ (P‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻌﻠﻢ )‪ ( A;u ;v ;w‬هﻲ ‪ z=0‬و ﻣﻌﺎدﻟﺔ اﻟﻔﻠﻜﺔ‪ S‬هﻲ ‪x²+y²+(z-c)²=r²‬‬
‫|‪d(Ω;(P))=|c‬‬
‫‪ x²+y²+(z-c)²=r ²‬و ‪z=0‬‬
‫ﻟﺪﻳﻨﺎ ‪⇔ M(x;y;z) ∈ (P)∩S‬‬
‫‪ x²+y²=r²-c²‬و ‪z=0‬‬
‫⇔‬
‫وﻣﻨﻪ ﺗﻘﺎﻃﻊ ‪ S‬و )‪ (P‬ﻣﺮﺗﺒﻂ ﺑﺤﻞ اﻟﻤﻌﺎدﻟﺔ ‪ x²+y²=r²-c²‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻌﻠﻢ ) ‪( A;u;v‬‬
‫*اﻟﺤﺎﻟﺔ‪ 1‬إذا آﺎن ‪ d(Ω;(P))>r‬ﻓﺎن ‪(P)∩S = Ø‬‬
‫*اﻟﺤﺎﻟﺔ‪ 2‬إذا آﺎن ‪ d(Ω;(P))= r‬ﻓﺎن } ‪(P)∩S = {A‬‬

‫*اﻟﺤﺎﻟﺔ ‪ 3‬إذا آﺎن ‪ d(Ω;(P))< r‬ﻓﺎن )‪ (P)∩S = (C‬ﺣﻴﺚ )‪ (C‬اﻟﺪاﺋﺮة اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪ A‬وﺷﻌﺎﻋﻬﺎ ‪r 2 − c 2‬‬

‫‪Moustaouli Mohamed‬‬

‫‪5‬‬

‫‪http://arabmaths.ift.fr‬‬

‫ﻣﺒﺮهﻨﺔ‬
‫ﻟﻴﻜﻦ )‪ (P‬ﻣﺴﺘﻮى ﻓﻲ اﻟﻔﻀﺎء و ‪ S‬ﻓﻠﻜﺔ ﻣﺮآﺰهﺎ ‪ Ω‬و ﺷﻌﺎﻋﻬﺎ ‪r‬‬
‫ﻳﻜﻮن ﺗﻘﺎﻃﻊ )‪ (P‬و ‪: S‬‬
‫* داﺋﺮة ﻣﺮآﺰهﺎ ‪ A‬اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟـ ‪ Ω‬ﻋﻠﻰ اﻟﻤﺴﺘﻮى )‪ (P‬و ﺷﻌﺎﻋﻬﺎ ) ) ‪r 2 − d 2 ( Ω; ( P‬‬

‫اذا آﺎن ‪d(Ω;(P))< r‬‬
‫* داﺋﺮة ﻧﻘﻄﺔ اذا آﺎن ‪d(Ω;(P))= r‬‬
‫* اﻟﻤﺠﻤﻮﻋﺔ اﻟﻔﺎرﻏﺔ اذا آﺎن ‪d(Ω;(P))>r‬‬
‫ب‪ -‬ﻣﺴﺘﻮى ﻣﻤﺎس ﻟﻔﻠﻜﺔ ﻓﻲ أﺣﺪ ﻧﻘﻄﻬﺎ‬
‫ﺗﻌﺮﻳﻒ‬
‫ﻟﺘﻜﻦ ‪ A‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻠﻜﺔ )‪S(Ω;r‬‬
‫ﻧﻘﻮل إن اﻟﻤﺴﺘﻮى )‪ (P‬ﻣﻤﺎس ﻟﻠﻔﻠﻜﺔ ‪ S‬ﻋﻨﺪ اﻟﻨﻘﻄﺔ ‪ A‬ادا آﺎن )‪ (P‬ﻋﻤﻮدي ﻋﻠﻰ )‪ (ΩA‬ﻓﻲ ‪A‬‬
‫ﺧﺎﺻﻴﺔ‬
‫ﻟﺘﻜﻦ ‪ A‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻠﻜﺔ )‪S(Ω;r‬‬
‫) ‪∀M∈(P‬‬
‫‪ΩA ⋅ AM = 0‬‬
‫⇔‬
‫)‪ (P‬ﻣﻤﺎس ﻋﻠﻰ )‪ S(Ω;r‬ﻓﻲ ‪A‬‬
‫ﺗﻤﺮﻳﻦ‬

‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ )‬

‫(‬

‫‪ ، O ; i ; j ; k‬ﻧﻌﺘﺒﺮ‪ S1‬اﻟﻔﻠﻜﺔ اﻟﺘﻲ ﻣﻌﺎدﻟﺘﻬﺎ‬

‫‪ x²+y²+z²-4x+2y-2z-3=0‬و ‪ S2‬اﻟﻔﻠﻜﺔ اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪ Ω2‬و ﺷﻌﺎﻋﻬﺎ ‪ , 2‬و )‪ (P‬اﻟﻤﺴﺘﻮى اﻟﺬي‬
‫و )´‪ (P‬اﻟﻤﺴﺘﻮى اﻟﺬي ﻣﻌﺎدﻟﺘﻪ ‪. 2x-y-2z-1=0‬‬
‫ﻣﻌﺎدﻟﺘﻪ ‪x-2y+z+1=0‬‬
‫‪ -1‬ﺗﺄآﺪ أن )‪ (P‬و ‪ S1‬ﻳﺘﻘﺎﻃﻌﺎن وﻓﻖ داﺋﺮة ﻣﺤﺪدا ﻋﻨﺎﺻﺮهﺎ اﻟﻤﻤﻴﺰة‪.‬‬
‫‪ -2‬أدرس ﺗﻘﺎﻃﻊ )´‪ (P‬و ‪. S2‬‬
‫‪ -3‬ﺣﺪد ﻣﻌﺎدﻟﺔ اﻟﻤﺴﺘﻮى اﻟﻤﻤﺎس ﻟﻠﻔﻠﻜﺔ ‪ S1‬ﻋﻨﺪ اﻟﻨﻘﻄﺔ )‪A(1;1; 3‬‬
‫إﺟﺎﺑﺔ‬
‫اذن )‪ S1 = S (Ω1;3‬ﺣﻴﺚ )‪Ω1(2;-1;1‬‬
‫‪S1 : (x-2)²+(y+1)²+(z-1)²=9‬‬
‫‪-1‬‬
‫‪2+ 2+1+1‬‬
‫=) )‪d(Ω1;(P‬‬
‫‪= 6 ≺3‬‬
‫‪1+ 4+1‬‬
‫)‪ (P‬و ‪ S1‬ﻳﺘﻘﺎﻃﻌﺎن وﻓﻖ داﺋﺮة ﻣﺮآﺰهﺎ ‪ B‬ﻣﺴﻘﻂ اﻟﻌﻤﻮدي ﻟـ ‪ Ω1‬ﻋﻠﻰ )‪ (P‬و ﺷﻌﺎﻋﻬﺎ ‪9−6 = 3‬‬
‫‪ B‬هﻮ ﺗﻘﺎﻃﻊ اﻟﻤﺴﺘﻮى )‪ (P‬و اﻟﻤﺴﺘﻘﻴﻢ )‪ (D‬اﻟﻤﺎر ﻣﻦ ‪ Ω1‬و اﻟﻌﻤﻮدي ﻋﻠﻰ )‪(P‬‬
‫ﻟﺪﻳﻨﺎ )‪ n(1;−2;1‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ )‪ (P‬و ﻣﻨﻪ ﻣﻮﺟﻬﺔ ﻟـ )‪ (D‬و ﺑﺎﻟﺘﺎﻟﻲ اﻟﺘﻤﺜﻴﻞ اﻟﺒﺎراﻣﺘﺮي ﻟـ )‪ (D‬هﻮ‬

‫∈‪t‬‬

‫‪ x = 2 +t‬‬
‫‪‬‬
‫‪ y = −1 − 2t‬‬
‫‪ z = 1+ t‬‬
‫‪‬‬

‫‪x − 2 y + z + 1 = 0‬‬
‫‪t = −1‬‬
‫‪‬‬
‫‪ x =1‬‬
‫‪x = 2+t‬‬
‫‪‬‬
‫‪‬‬
‫‪ B ∈ ( P ) ∩ ( D ) ⇔ ‬اذن ﺗﻘﺎﻃﻊ )‪ (P‬و ‪ S1‬هﻮ اﻟﺪاﺋﺮة ‪ C B; 3‬ﺣﻴﺚ )‪B(1;1;0‬‬
‫‪⇔‬‬
‫‪ y = −1 − 2t‬‬
‫‪ y =1‬‬
‫‪‬‬
‫‪ z = 0‬‬
‫‪z = 1+ t‬‬
‫‪ -2‬ﻟﺪﻳﻨﺎ ‪ d(Ω2;(P´))=2‬وﻣﻨﻪ ﺗﻘﺎﻃﻊ ‪ S2‬و )´‪ (P‬هﻮ اﻟﻨﻘﻄﺔ ‪ C‬ﺑﺎﺗﺒﺎع ﻧﻔﺲ اﻟﺨﻄﻮات اﻟﺴﺎﺑﻘﺔ ﻧﺤﺪد اﻟﻨﻘﻄﺔ ‪C‬‬
‫‪ -3‬ﻟﺪﻳﻨﺎ ‪ A ∈ S1‬ﻟﻴﻜﻦ )´´‪ (P‬ﻣﻤﺎس ﻟـ ‪ S1‬ﻋﻨﺪ ‪A‬‬

‫)‬

‫(‬

‫‪M ( x ; y ; z ) ∈ ( P ") ⇔ AM ⋅ ΩA ⇔ ..........................‬‬

‫‪ -4‬ﺗﻘﺎﻃﻊ ﻣﺴﺘﻘﻴﻢ و ﻓﻠﻜﺔ‬
‫ﻧﻌﺘﺒﺮ ‪S : x²+y²+z²-2y +4z+4=0‬‬
‫ﻣﺜﺎل‬

‫‪Moustaouli Mohamed‬‬

‫‪6‬‬

‫‪http://arabmaths.ift.fr‬‬

‫∈‪t‬‬

‫∈ ‪t‬‬

‫‪ x = 1 + 2t‬‬
‫‪( D 1 ) :  y = 1 + t‬‬
‫‪ z = −3 + t‬‬
‫‪‬‬

‫∈‪t‬‬

‫‪ x = 3t‬‬
‫‪( D 2 ) :  y = 2‬‬
‫‪ z = −2 + t‬‬
‫‪‬‬

‫‪−1‬‬
‫‪‬‬
‫=‬
‫‪+ 2t‬‬
‫‪x‬‬
‫‪‬‬
‫‪2‬‬
‫‪‬‬
‫‪1‬‬
‫‪( D 3 ) :  y = + 3t‬‬
‫‪3‬‬
‫‪‬‬
‫‪ z = −2‬‬
‫‪‬‬
‫‪‬‬

‫ﺣﺪد ﺗﻘﺎﻃﻊ ‪ S‬ﻣﻊ آﻞ ﻣﻦ )‪ (D1‬و )‪ (D2‬و )‪(D3‬‬
‫ﺗﻤﺎرﻳﻦ‬
‫ﺗﻤﺮﻳﻦ‪1‬‬

‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ) ‪(O ; i ; j ; k‬‬

‫ﻧﻌﺘﺒﺮ )‪ A(1;0;1‬و )‪ B(0;0;1‬و )‪ C(0;-1;1‬و اﻟﻤﺴﺘﻘﻴﻢ )‪ (D‬اﻟﻤﺎر ﻣﻦ ‪ C‬واﻟﻤﻮﺟﻪ ﺑـ )‪u(−1;2;1‬‬
‫‪ -1‬ﺑﻴﻦ أن ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ‪ M‬ﺣﻴﺚ ‪ MA=MB=MC‬ﻣﺴﺘﻘﻴﻢ وﺣﺪد ﺗﻤﺜﻴﻼ ﺑﺎرا ﻣﺘﺮﻳﺎ ﻟﻪ‬
‫‪ -2‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪ (P‬اﻟﻌﻤﻮدي ﻋﻠﻰ )‪ (D‬ﻓﻲ ‪C‬‬
‫‪ -3‬اﺳﺘﻨﺘﺞ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ‪ S‬اﻟﻤﺎرة ﻣﻦ ‪A‬و ‪ B‬و اﻟﻤﻤﺎﺳﺔ ﻟـ )‪ (D‬ﻓﻲ ‪C‬‬

‫ﺗﻤﺮﻳﻦ‪2‬‬

‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ )‬

‫(‬

‫‪ O ; i ; j ; k‬ﻧﻌﺘﺒﺮ )‪ A(0;3;-5‬و )‪ B(0;7;-3‬و )‪C(1;5;-3‬‬

‫‪ -1‬أﻋﻂ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪(ABC‬‬
‫‪ -2‬أﻋﻂ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ A‬ﺣﻴﺚ )‪ u(−1;2;1‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬
‫‪ -3‬ﻟﻴﻜﻦ )‪ (P‬اﻟﻤﺴﺘﻮى اﻟﻤﺤﺪد ﺑﺎﻟﻤﻌﺎدﻟﺔ ‪x+y+z=0‬‬
‫أ‪ -‬ﺗﺄآﺪ أن )‪(P‬و )‪ (ABC‬ﻳﺘﻘﺎﻃﻌﺎن وﻓﻖ ﻣﺴﻨﻘﻴﻢ )‪(D‬‬
‫ب‪ -‬ﺣﺪد ﺗﻤﺜﻴﻼ ﺑﺎرا ﻣﺘﺮﻳﺎ ﻟـ )‪(D‬‬
‫‪2 + z 2 +10z +9 = 0‬‬
‫‪x‬‬
‫‪‬‬
‫‪ -4‬ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻔﻀﺎء اﻟﺪاﺋﺮة )‪ (C‬اﻟﺘﻲ اﻟﻤﺤﺪدة ﺑـ‬
‫‪‬‬
‫‪y =0‬‬
‫‪‬‬
‫أ‪ -‬ﺣﺪد ﻣﻌﺎدﻟﺔ ﻟﻠﻔﻜﺔ ‪ S‬اﻟﺘﻲ ﺗﺘﻀﻤﻦ اﻟﺪاﺋﺮة )‪ (C‬و ﻳﻨﺘﻤﻲ ﻣﺮآﺰهﺎ إﻟﻰ )‪(ABC‬‬
‫ب ﺣﺪد ﺗﻘﺎﻃﻊ ‪ S‬و )‪(AC‬‬
‫ﺗﻤﺮﻳﻦ‪3‬‬
‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻣﺒﺎﺷﺮ ﻧﻌﺘﺒﺮ )‪ A(1;-1;1‬و )‪ B(3;1;-1‬و )‪ (P‬اﻟﻤﺴﺘﻮى ذا‬
‫‪ x = 3t‬‬
‫‪‬‬
‫اﻟﻤﻌﺎدﻟﺔ ‪ (D) 2x-3y+2z=0‬اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﻤﺜﻞ ﺑﺎرا ﻣﺘﺮﻳﺎ ﺑـ‬
‫∈ ‪ x = −2 − 3t t‬‬
‫‪ z = 2 + 4t‬‬
‫‪‬‬
‫‪ -1‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ A‬و ‪ B‬واﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ )‪(D‬‬
‫‪ -2‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ A‬و ‪ B‬واﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى )‪(P‬‬
‫‪ -3‬أﺣﺴﺐ ))‪ d(A;(P‬و ))‪d(A;(D‬‬
‫‪ -4‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´´‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ B‬و اﻟﻤﻮازي ﻟﻠﻤﺴﺘﻮى )‪(P‬‬
‫ﺗﻤﺮﻳﻦ‪4‬‬
‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻧﻌﺘﺒﺮ اﻟﻤﺴﺘﻮى )‪ (P‬ذا اﻟﻤﻌﺎدﻟﺔ ‪3x+2y-z-5=0‬‬

‫‪Moustaouli Mohamed‬‬

‫‪7‬‬

‫‪http://arabmaths.ift.fr‬‬

‫‪x − 2 y + z − 3 = 0‬‬
‫و )‪ (D‬اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﻌﺮف ﺑـ‬
‫‪‬‬
‫‪ x− y−z+2=0‬‬
‫‪ -1‬ﺣﺪد ﺗﻤﺜﻴﻼ ﺑﺎرا ﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ )‪(D‬‬
‫‪ -2‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´‪ (P‬اﻟﺬي ﻳﺘﻀﻤﻦ )‪ (D‬و اﻟﻌﻤﻮدي ﻋﻠﻰ )‪.(P‬‬
‫ﺗﻤﺮﻳﻦ‪5‬‬
‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻧﻌﺘﺒﺮ اﻟﻤﺴﺘﻮى )‪ (P‬ذا اﻟﻤﻌﺎدﻟﺔ ‪x+y+z+1=0‬‬
‫و اﻟﻤﺴﺘﻮى )‪ (Q‬ذا اﻟﻤﻌﺎدﻟﺔ ‪2x-2y-5=0‬‬
‫و )‪ (S‬ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ )‪ M(x;y;z‬اﻟﺘﻲ ﺗﺤﻘﻖ‪x²+y²+z²-2x+4y+6z+11=0‬‬
‫‪ -1‬ﺑﻴﻦ أن )‪ (S‬ﻓﻠﻜﺔ ﻣﺤﺪدا ﻣﺮآﺰهﺎ و ﺷﻌﺎﻋﻬﺎ‬
‫‪ -2‬ﺗﺄآﺪ أن )‪ (P‬ﻣﻤﺎس ﻟﻠﻔﻠﻜﺔ و ﺣﺪد ﺗﻘﺎﻃﻌﻬﻤﺎ‬
‫‪ -3‬ﺣﺪد ﺗﻤﺜﻴﻼ ﺑﺎراﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ )‪ (D‬اﻟﻤﺎر ﻣﻦ )‪ A(0;1;2‬و اﻟﻌﻤﻮدي ﻋﻠﻰ )‪(P‬‬
‫‪ -4‬ﺗﺤﻘﻖ أن ) ‪ ( P ) ⊥ ( Q‬و أﻋﻂ ﺗﻤﺜﻴﻼ ﺑﺎراﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ )´‪(D‬ﺗﻘﺎﻃﻊ )‪ (P‬و)‪(Q‬‬
‫ﺗﻤﺮﻳﻦ‪6‬‬
‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻧﻌﺘﺒﺮ اﻟﻨﻘﻄﺔ )‪A(-2;3;4‬‬
‫اﻟﻤﺴﺘﻮى )‪ (P‬ذا اﻟﻤﻌﺎدﻟﺔ ‪ (S) x+2y-2z+15=0‬ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ )‪ M(x;y;z‬اﻟﺘﻴﺘﺤﻘﻖ‬
‫‪2‬‬
‫‪2‬‬
‫‪x + y − 2x − 8 = 0‬‬
‫‪ x²+y²+z²-2x+6y+10z-26=0‬و )‪ (C‬اﻟﺪاﺋﺮة اﻟﺘﻲ ﻣﻌﺎدﻟﺘﻬﺎ‬
‫‪‬‬
‫‪z =0‬‬
‫‪-1‬‬
‫‪-2‬‬
‫‪-3‬‬
‫‪-4‬‬

‫ﺑﻴﻦ أن )‪ (S‬ﻓﻠﻜﺔ ﻣﺤﺪدا ﻋﻨﺎﺻﺮهﺎ اﻟﻤﻤﻴﺰة‬
‫ﺑﻴﻦ أن )‪ (P‬و )‪ (S‬ﻳﺘﻘﺎﻃﻌﺎن وﻓﻖ داﺋﺮة آﺒﺮى )'‪ (C‬و ﺣﺪدهﺎ‬
‫ﺣﺪد ﻣﻌﺎدﻟﺘﻲ اﻟﻤﺴﺘﻮﻳﻦ اﻟﻤﻤﺎﺳﻴﻦ ﻟﻠﻔﻠﻜﺔ )‪ (S‬و اﻟﻤﻮازﻳﻴﻦ ﻟـ )‪(P‬‬
‫أآﺘﺐ ﻣﻌﺎدﻟﺔ اﻟﻔﻠﻜﺔ )'‪ (S‬اﻟﻤﺎر ﻣﻦ ‪ A‬اﻟﻤﺘﻀﻤﻦ ﻟﻠﺪاﺋﺮة )‪(C‬‬

‫‪Moustaouli Mohamed‬‬

‫‪8‬‬

‫‪http://arabmaths.ift.fr‬‬


Documents similaires


Fichier PDF resultats cpge mpsi 2018
Fichier PDF sa naissance
Fichier PDF chaine de transmission
Fichier PDF notre prophete
Fichier PDF commentaire de la fatiha et de amma
Fichier PDF cours latex version2018


Sur le même sujet..