Fichier PDF

Partage, hébergement, conversion et archivage facile de documents au format PDF

Partager un fichier Mes fichiers Boite à outils PDF Recherche Aide Contact



TP 4 .pdf


Nom original: TP 4.pdf
Titre: TP 4
Auteur: Magali

Ce document au format PDF 1.4 a été généré par PDFCreator Version 1.2.3 / GPL Ghostscript 9.04, et a été envoyé sur fichier-pdf.fr le 05/10/2011 à 22:58, depuis l'adresse IP 88.170.x.x. La présente page de téléchargement du fichier a été vue 2029 fois.
Taille du document: 12 Ko (2 pages).
Confidentialité: fichier public




Télécharger le fichier (PDF)









Aperçu du document


TP BTS IRIS 1
Analyse fréquentielle d’un signal
(= analyse spectrale = analyse de Fourier)
1. Signal sinusoïdal
1er signal
égler le GBF de façon à ce qu’il délivre un signal sinusoïdal :
- de fréquence 2500 Hz (période 0,4 ms)
- d’amplitude 4 V
- de valeur moyenne 0 V
Relier le GBF à la carte d’acquisition. Démarrer le logiciel SYNCHRONIE.
Effectuer les réglages nécessaires pour visualiser 2 périodes du signal (soit une durée totale de
0,8ms) dans PARAMETRES.
Lancer l’acquisition du signal.
Puis lancer l’analyse spectrale (Fourier).
A l’aide d’une copie d’écran, copier ces 2 graphiques dans un document word. Sauvegarder le
document et réserver pour plus tard.
2ème signal
Régler le GBF de façon à ce qu’il délivre un signal sinusoïdal :
- de fréquence 1000 Hz (période 1 ms)
- d’amplitude 2,5 V
- de valeur moyenne 1 V
Effectuer les réglages nécessaires pour visualiser 2 périodes du signal (soit une durée totale de 2ms)
dans PARAMETRES.
Lancer l’acquisition du signal.
Puis lancer l’analyse spectrale (Fourier).
A l’aide d’une copie d’écran, copier ces 2 graphiques dans le document word précédent.
Faire en sorte que les 4 graphiques tiennent sur 1 seule page et laisser de la place pour répondre aux
questions suivantes :
Interprétation
Que nous donne l’analyse de Fourier ? (un graphique – appelé spectre – représentant …. en fonction
de ….)
En généralisant par rapport aux 2 exemples précédents, expliquer de façon précise et détaillée à
quoi ressemble le spectre d’un signal sinusoïdal.
Ecrivez votre nom et donnez un titre au document word avant de l’imprimer (ex : analyse spectrale
d’un signal sinusoïdal).

2. Signal non sinusoïdal
1er signal
Régler le GBF de façon à ce qu’il délivre un signal carré :
- de fréquence 2500 Hz (période 0,4 ms)
- d’amplitude 4 V
- de valeur moyenne 0 V
Relier le GBF à la carte d’acquisition. Démarrer le logiciel SYNCHRONIE.
Effectuer les réglages nécessaires pour visualiser 2 périodes du signal (soit une durée totale de
0,8ms) dans PARAMETRES.
Lancer l’acquisition du signal.
Puis lancer l’analyse spectrale (Fourier).
A l’aide d’une copie d’écran, copier ces 2 graphiques dans un document word. Sauvegarder le
document et réserver pour plus tard.
2ème signal
Régler le GBF de façon à ce qu’il délivre un signal triangulaire :
- de fréquence 2500 Hz (période 0,4 ms)
- d’amplitude 4 V
- de valeur moyenne 0 V
Lancer l’acquisition du signal. Puis lancer l’analyse spectrale (Fourier).
A l’aide d’une copie d’écran, copier ces 2 graphiques dans le document word précédent.
Faire en sorte que les 4 graphiques tiennent sur 1 seule page et laisser de la place pour répondre aux
questions suivantes :
Interprétation
Expliquer de façon précise et détaillée à quoi ressemble le spectre d’un signal carré.
Expliquer de façon précise et détaillée à quoi ressemble le spectre d’un signal triangulaire.
Définition (à recopier et à compléter sur votre document word)
Un signal périodique u(t) de fréquence f peut être considéré comme la somme :
- d’une composante sinusoïdale de fréquence ___ (appelée le fondamental)
- d’autres composantes sinusoïdales de fréquences ______________de f (appelées les harmoniques)
- et éventuellement, si u(t) n’est pas _______________, d’une composante continue (égale à u ) .
Le rang d’un harmonique est donné par le nombre entier n sachant que sa fréquence vaut _____ .
Un peu de maths
L’une de ces équations correspond au signal carré, l’autre au signal triangulaire :
4E
4E
4E
u(t) =
sin( ωt ) +
sin( 3ωt ) +
sin( 5ωt ) + ...


π
8E
8E
8E
u(t) =
sin( ωt ) + 2 sin( 3ωt ) + 2 sin( 5ωt ) + ...
π
3 π
5 π
Sur le document word, associez chaque signal à son équation instantanée. (E est l’amplitude)
Ecrivez votre nom et donnez un titre au document word avant de l’imprimer.


TP 4.pdf - page 1/2
TP 4.pdf - page 2/2

Documents similaires


Fichier PDF tp 4
Fichier PDF analyse spectrale continu
Fichier PDF iris1 chap 3 proprietes frequentielles d un signal
Fichier PDF td communications
Fichier PDF traitement des signaux
Fichier PDF tuto etude suspension avec accelerometre de smarthphone


Sur le même sujet..