DAN Gold Catalysis .pdf



Nom original: DAN_Gold Catalysis.pdf
Auteur: David Nagib

Ce document au format PDF 1.3 a été généré par Microsoft PowerPoint / Mac OS X 10.5.8 Quartz PDFContext, et a été envoyé sur fichier-pdf.fr le 17/06/2013 à 20:22, depuis l'adresse IP 84.103.x.x. La présente page de téléchargement du fichier a été vue 945 fois.
Taille du document: 6.3 Mo (36 pages).
Confidentialité: fichier public




Télécharger le fichier (PDF)










Aperçu du document


Recent Developments in Homogeneous Gold Catalysis
David A. Nagib

MacMillan Group
Literature Meeting
03.17.2010

Relativistic Effects in Gold Catalysis
Relativistic effects – phenomenon resulting from the need to
consider velocity as significant relative to the speed of light





m = m°/√1-(v/c)2

Consequences:
•  Relativistic mass increases as velocity approaches c
•  Increased mass results in decreased Bohr radius
•  Contracted 6s orbital better shields (expands) 5d orbital

• Faster
• Heavier
• Nearer

Relativistic contraction of 6s orbital

Filled
5d orbital
Filled
4f orbital

79Au

Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395-403
Pyykkö, P.; Desclaux, J. P. Acc. Chem. Res. 1979, 12, 276-281

Relativistic Effects in Gold Catalysis
Relativistic effects – phenomenon resulting from the need to
consider velocity as significant relative to the speed of light





m = m°/√1-(v/c)2

Consequences:
•  Relativistic mass increases as velocity approaches c
•  Increased mass results in decreased Bohr radius
•  Contracted 6s orbital better shields (expands) 5d orbital

• Faster
• Heavier
• Nearer

Increased π-acidity
R

>

R

Au

Ag

Increased e− delocalization
(i.e. backbonding)
Au

Ag

>
Au

Ag

Modes of Reactivity in Homogeneous Gold Catalysis
Nu

E
Nu

Au

Au

trans-addition

increased π-acidity
(contracted 6s orbital)

♦ proto-deauration
E+ = H+ (Nu-H)
Nu

♦ aprotic nucleophile
E+ = alkene, alcohol, etc.
Nu

Nu

H

increased e− delocalization
(expanded 5d orbital)

E

♦ Au backbonding
E+ = alkene, ylide, etc.
E
Au

Nu

E
Au

Lewis acid
derived products

Lewis acid
derived products

cation
derived products

carbenoid
derived products

heterofunctionalization
heterocyclization

ring expansion
cycloisomerization

cation cyclization
rearrangement

C-H insertion
cyclopropanation

Modes of Reactivity in Homogeneous Gold Catalysis
Nu

E
Nu

Au

Au

trans-addition

increased π-acidity
(contracted 6s orbital)

♦ proto-deauration
E+ = H+ (Nu-H)
Nu

♦ aprotic nucleophile
E+ = alkene, alcohol, etc.
Nu

Nu

H

increased e− delocalization
(expanded 5d orbital)

E

♦ Au backbonding
E+ = alkene, ylide, etc.
E
Au

Nu

E
Au

Lewis acid
derived products

Lewis acid
derived products

cation
derived products

carbenoid
derived products

heterofunctionalization
heterocyclization

ring expansion
cycloisomerization

cation cyclization
rearrangement

C-H insertion
cyclopropanation

Activation of π-systems Towards Nucleophiles

 Oxygen nucleophiles

 Other nucleophiles
Hydration: Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729-3734
Teles, J.; Brode, S.; Chabanas, M. Angew. Chem. Int. Ed. 1998, 37, 1415-1418
Hydro-amination: Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349-3352
Hydro-fluorination: Akana, J.; Bhattacharyya, K.; Muller, P.; Sadighi, J.
J. Am. Chem. Soc. 2007, 129, 7736-7727

Trostʼs Synthesis of Bryostatin
 Gold-catalyzed 6-endo-dig cyclization provides highly sensitive dihydrofuran C ring under mild conditions

Trost, B.; Dong, G. Nature 2008, 456, 485-488

Employing Carbon Nucleophiles: Hydroarylation
 Au(I) & Au(III)-catalysts provide complete regioselectivity in the hydroarylation of terminal alkynes

o/p

Reetz, M.; Sommer, K. Eur. J. Org. Chem. 2003, 18, 3485-3496

Employing Carbon Nucleophiles: Enolate Alkylation
 A wide range of β-keto esters serve as efficient nucleophiles for the mild and fast hydroalkylation of terminal alkynes

 Deuterium studies support trans-addition mechanism and explain limitation towards internal alkynes

Kennedy-Smith, J.; Staben, S.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526-4527

Cyclization of Silyl Enol Ethers
 Enol silanes are also suitable nucleophiles for quaternary (& now tertiary) carbon center construction

TBSO

TBS
R

5-exo-dig

O

6-exo-dig

( )n

H

R

H2O
( )n

H
AuL
terminal-δ-alkyne

O

H

R

internal addition
favored

 Water serves as the external proton source for the final proto-deauration

Staben, S.; Kennedy-Smith, J.; Huang, D.; Corkey, B.; LaLonde, R.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 5991-5994

Internal vs Terminal Alkynes
 Markovnikov addition provides access to variously substituted cyclopentenes depending on alkyne substitution
TBSO
X

R
( )n

TBS

TBS
O

5-exo-dig

O

H

AuL
terminal-δ-alkyne

TBS

5-endo-trig
H
R

terminal-β-allene

O

O
H


H

R

internal addition
favored

TBSO

( )n

H

R

( )n

H

R

R

H2O

6-exo-dig

( )n

H

benzylic/halo addition
favored

TBSO
R

X

( )n
AuL

internal-γ-alkyne

R

X

X = Ar, I

H

O

O

5-endo-dig



H
AuL

R

( )n
H

R

conformation governs
addition

Staben, S.; Kennedy-Smith, J.; Huang, D.; Corkey, B.; LaLonde, R.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 5991-5994

Synthetic Applications of Cyclopentenes
 The non-ester bearing quaternary cyclopentenes allow rapid synthetic access to a variety of Lycopodium alkaloids.
TBSO
R

X

TBS

( )n

AuL

R

3 steps

8 steps

BocN

O
R

N

BnO

O

TFA

O

H

Me

O

HO
H

Me

H

benzylic/halo addition
favored

1. Organocat.
2. H+
3. β-allene add'n
4. NIS

tBuO

X

( )n

internal-γ-alkyne

O

R

X

X = Ar, I

H

O

O

5-endo-dig

H
(+)-fawcettimine
13 steps

O

N

O
Me

H

Me

H
(+)-lycopladine A
8 steps

Staben, S.; Kennedy-Smith, J.; Huang, D.; Corkey, B.; LaLonde, R.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 5991-5994
Linghu, X.; Kennedy-Smith, J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671-7673
For comparison, structurally similar Lycopodium alkaloids synthesized in 22-24 steps: Laemmerhold, K.; Breit, B. Angew. Chem. Int. Ed. 2010, ASAP

Enantioselective Conia-Ene
 A chiral Pd-complex was preferred due to the linear geometry of the ligand and substrates across the Au-catalyst

 X-ray structures demonstrate the distance between the ligand framework and the pro-chiral substrate

4.58 Å

Au vs Pd

3.14 Å

Corkey, B.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168-17169
Shapiro, N.; Toste, F. D. Synlett. 2010, 5, 675-691

Enantioselective Gold Catalysis
 Development of a Au(I)-catalyzed asymmetric hydroamination reaction

 Coordinating counteranion provides increasing enantioselectivity due to the proposed model below

 All 3 species observed by 31P NMR of 2:1 L(AuCl)2:AgBF4"
 Coordinating counteranions shift equilibrium to left (higher ee)
LaLonde, R.; Sherry, B.; Kang, E.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452-2453

Chiral Counterion Catalysis
 Chiral induction still challenging due to the expanse of the linear gold complex

 Chiral ligand strategy

 An interesting alternative
 Chiral counterion strategy

Increasing solvent polarity

 Nucleophiles also include -NHSO2Ar & -CO2H

Hamilton, G.; Kang, E.; Mba, M.; Toste, F. D. Science. 2007, 317, 496-499
Perspective: Lacour, J.; Linder, D. Science. 2007, 317, 462-463

Modes of Reactivity in Homogeneous Gold Catalysis
Nu

E
Nu

Au

Au

trans-addition

increased π-acidity
(contracted 6s orbital)

♦ proto-deauration
E+ = H+ (Nu-H)
Nu

♦ aprotic nucleophile
E+ = alkene, alcohol, etc.
Nu

Nu

H

increased e− delocalization
(expanded 5d orbital)

E

♦ Au backbonding
E+ = alkene, ylide, etc.
E
Au

Nu

E
Au

Lewis acid
derived products

Lewis acid
derived products

cation
derived products

carbenoid
derived products

heterofunctionalization
heterocyclization

ring expansion
cycloisomerization

cation cyclization
rearrangement

C-H insertion
cyclopropanation

Non-Canonical Reactivity
 Compared with nucleophilic activation provided by canonical metal catalysis, gold offers orthogonal electrophilic activation

Ring Expansions
 Compared with nucleophilic activation provided by canonical metal catalysis, gold offers orthogonal electrophilic activation

 Non-canonical nucleophiles that lack metal-coordination sites (i.e. C-C σ-bond) are suitable partners in Au-catalysis

Markham, J.; Staben, S.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 9708-9709
Kleinbeck, F.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 9178-9179

Modes of Reactivity in Homogeneous Gold Catalysis
Nu

E
Nu

Au

Au

trans-addition

increased π-acidity
(contracted 6s orbital)

♦ proto-deauration
E+ = H+ (Nu-H)
Nu

♦ aprotic nucleophile
E+ = alkene, alcohol, etc.
Nu

Nu

H

increased e− delocalization
(expanded 5d orbital)

E

♦ Au backbonding
E+ = alkene, ylide, etc.
E
Au

Nu

E
Au

Lewis acid
derived products

Lewis acid
derived products

cation
derived products

carbenoid
derived products

heterofunctionalization
heterocyclization

ring expansion
cycloisomerization

cation cyclization
rearrangement

C-H insertion
cyclopropanation

Enyne Cycloisomerizations
 Simple olefins can also serve as nucleophiles when tethered to a π–activated alkyne (1,6-Enynes)

E

Me

2% (PPh3)AuSbF6
CH2Cl2, r.t., 10 min

E
Me

E
E

5-exo-dig

96% yield

 A series of skeletal rearrangements involving carbenoid and cationic intermediates may be invoked for this transformation

H

H
Me

E

Me
H

E

AuL

H

E

H
E

AuL

E

Me

Me
E

E

E
LAu

cation

H

carbene

LAu
cation

 Product selectivity is highly dependant on the substitution of the α,ω–enyne starting materials

Nieto-Oberhuber, C.; Muñoz, M.; Buñuel, E.; Nevado, C.; Cárdenas, D.; Echavarren, A. Angew. Chem. Int. Ed. 2004, 43, 2402-2406

Enyne Cycloisomerizations Revisited
 Simple olefins can also serve as nucleophiles when tethered to a π–activated alkyne (1,5-Enynes)

R

R
R

R
H

2% (PPh3)AuSbF6
CH2Cl2, r.t., 5 min

5-exo-dig

R

R

R

1,2-H shift

R

R

H

AuL

AuL

8 examples
> 94% yield

 1,5-Enynes (from propargyl alcohols) reliably provide synthetic access to the cis-fused 3,5-ring systems

TMS

1% LAuSbF6

propyl
Bn

H

propyl

OH

5% (dppm)ReOCl3
5% NH4PF6, MeNO2, 65°C

Bn

propyl

CH2Cl2, r.t.
Bn
79% yield

98% yield

 Free alcohols can replace the benzyl substituent and provide access to propane-fused cyclopentenone
Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654-8655
Kleinbeck, F.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 9178-9179

Enyne Cycloisomerizations Revisited
 Simple olefins can also serve as nucleophiles when tethered to a π–activated alkyne (1,5-Enynes)

R

R
R

R
H

2% (PPh3)AuSbF6
CH2Cl2, r.t., 5 min

R

R

5-exo-dig

H

AuL

R

1,2-H shift

R

R
AuL
8 examples
> 94% yield

 Further mechanistic considerations
 Propargyl deuterium label is selectively incorporated in the vinyl position of the product
 1,2-Disubstituted olefins underwent cycloisomerization stereospecifically

R'
R"
R
D

R'
R"
R

AuL

D

cation

D

R'
R"

R

R
AuL

R'
R"

R'
R"

AuL
hybrid

D

R
AuL

D

carbenoid

 Gold-carbenoid character is strongly suggested by these mechanistic observations …
Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654-8655
Kleinbeck, F.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 9178-9179

Carbene Controversy
 Fürstner strongly argues that these gold-catalyzed processes exhibit more non-classical carbocationic features

E

carbene
mechanism

E

R1

O

cationic
mechanism

OH

 Fürstner isolated and characterized a stable
alkyl-gold complex that could exist as a carbene

R2
E

O

E

R1

E

OH

R1

OH

E
LAu

LAu

R2

E

e
M

E

=

O

R1

E
R2

19% yield
82% yield

O

AuPPh3

O
H

AuPPh3

R2 = H
R2 = H
R2 = Me

carbene

cation

O
R2

R1 = H
R1 = Me
R1 = H

H

if R1 = Me
=

E

O

R2
if

e

O

R2

O

M

O

R2

if

if R1 = Me

R1

O

 NMR studies strongly suggest that the cation
mesomer better represents the complex

11% yield
80% yield
-

 Employing a carboxylate trap as a mechanistic probe, Fürstner demonstrated the 1,6-enynes arise from cationic mechanism
Fürstner, A.; Morency, L. Angew. Chem., Int. Ed. 2008, 47, 5030-5033
Seidel, G.; Mynott, R.; Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 2510-2513

Carbenes Defended
 Toste held that many of their methodologies strongly resembled reactivity associated with carbenic systems

 Toste & Goddard refute Fürstnerʼs NMR
experiments with bond rotation calculations and
measurements of their own
( )n

( )n
(n = 1-4)

( )n

[Au]

[Au]

H

H

[Au]+

O

O
O

C-C migration

(n = 1,2)

C-H insertion

(n = 3,4)

H

O

vs

AuPPh3

Furstner's
non-carbene

H

AuL

Toste/Goddard
carbene

O

( )n

O

( )n

9 examples
82-99% yields

12 examples
60-86% yields

Ph

Ph

Ph

Ph

80% yield

 Toste & Goddardʼs bonding model for gold(I) carbene complex involves both σ- and π- bonding, with a bond order ≤ 1
Benitez, D.; Shapiro, N.; Tkatchouk, E.; Wang, Y.; Goddard, W.; Toste, F. D. Nature Chem. 2009, 1, 482-486
Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2809-2811

Carbene Controversy Concluded
 An entire literature meeting could be devoted to this subject …

Carbocationic
ONLY

Carbocationic
 Carbenoid
Continuum

Carbene
ONLY

 Ongoing debate on the cationic and carbene character of gold catalysis suggests a continuum of tunable reactivity
 The carbocation-carbenoid continuum best offers a helpful mnemonic to explain and predict many facets of gold catalysis

Methods of Generating Gold Carbenes
 Gold carbenes from alkynyl sulfoxides offer an orthogonal approach to reactivity previously associated with diazocarbonyls

LG+

Nu-

[Au]+

LG+

Nu-

5-exo-dig

LG+ Nu

LG

[Au]+

[Au]
[Au]+

Ph
S

gold carbene

Ph

Ph
O

[Au]+

S

Nu

O

5-exo-dig

S

SPh

O

O

[Au]+

[Au]
[Au]+

gold carbene

O
C-H insertion

S
94% yield

 Azides are analogous carbene precursors
Shapiro, N.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160-4161
Gorin, D.; Davis, N.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260-11261

Methods of Generating Gold Carbenes
 Gold carbenes from alkynyl sulfoxides offer an orthogonal approach to reactivity previously associated with diazocarbonyls

Me
Me

Me
S

5% IPrAuCl
5% AgSbF6
CH2Cl2, r.t.

S

C-C σ-bond
migration

O

O
ArS

Me
[Au]+
gold carbene

[M]

Me

S

O

Me
N2

Shapiro, N.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160-4161
Gorin, D.; Davis, N.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260-11261

Another Method of Generating Gold Carbenes
 Propargyl carboxylates allow synthetically facile access to gold carbenes via a 1,2-acyloxy migration

O

O

[Au]+

O

O

5-exo-dig

R
R'

R
R'

O

O
O
R

O

R

R'

[Au]

R'

[Au]+

[Au]+

gold carbene
1,2-acyloxy migration

O

2 steps

acid derivative
alkyne

O
R

Ph

O

O

X

R'

ketone

R

L*
R'

Ph
70% yield
> 20:1 dr, 81% ee

 Modular synthesis of propargyl carboxylates coupled with gold carbene pathways allow for rapid complexity generation
Johansson, M.; Gorin, D.; Staben, S.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002-18003

Propargyl Carboxylate Reactivity
 Substitution patterns dictate formation of vinyl gold versus gold carbene species
EWG
or H

tBu

O

O

[Au]+

R
R'

O

O

5-exo-dig

R
R'

O

O

O
R

O

R

R'

[Au]

[Au]+

R'

[Au]+

gold carbene
1,2-acyloxy migration

[Au]+

O

O

R
R'

6-endo-dig
O

O

[Au]
[3,3]-rearrangement

O

O

O

[Au]



R

R
R'
[Au]+

O

[Au]
R'

R

R'

α-carbonyl
vinyl gold

Wang, S.; Zhang, G.; Zhang, L. Synlett. 2010, 5, 692-706

Vinyl Gold Intermediate
 Substitution patterns dictate formation of vinyl gold versus gold carbene species

O

O

E

Nu
or

R

O

O

R
R'

R'

R

6-endo-dig
O

O

O

[Au]

O

O

O

[Au]



R

R
R'
[Au]+

R'

[Au]
R'

R

R'

α-carbonyl
vinyl gold

[3,3]-rearrangement

 Vinyl gold species can also be exploited in a variety of rapid complexity generating transformations
Wang, S.; Zhang, G.; Zhang, L. Synlett. 2010, 5, 692-706

Electrophilic Trapping of Vinyl Gold
 Electrophilic trapping by N-halo-succinimides affords α-halo -enones and -enals from propargyl acetates

O

O

Br

I

butyl

Me

butyl

85% yield
> 99:1 dr

O

O

R
R'

NBS
or
NIS

94% yield
> 20:1 dr

6-endo-dig
O

O

O

[Au]
[3,3]-rearrangement

O

O

O

[Au]



R

R
R'
[Au]+

butyl

or

[Au]
R'

R

R'

α-carbonyl
vinyl gold

Yu, M.; Zhang, G.; Zhang, L. Org. Lett. 2007, 9, 2147-2150
Yu, M.; Zhang, G.; Zhang, L. Tetrahedron. 2009, 65, 1846-1855

Electrophilic Trapping of Vinyl Gold
 Catalytic molybdenum oxide allows for the use of propargyl alcohols in addition to propargyl carboxylates

O

O

Br

OH

I

butyl

Me

butyl

85% yield
> 99:1 dr

Me
H

butyl

or

NBS
or
NIS

94% yield
> 20:1 dr

butyl

1% MoO2

O

Mo
O

R
R'

6-endo-dig

O

Mo

Mo
O

[Au]

[3,3]-rearrangement

O

O

+ H2O
[Au]



R

R
R'

[Au]+

O

[Au]
R'

- MoO2
R

R'

α-carbonyl
vinyl gold

Yu, M.; Zhang, G.; Zhang, L. Org. Lett. 2007, 9, 2147-2150
Ye, L.; Zhang, L. Org. Lett. 2009, 11, 3646-3649

Nucleophilic Trapping of Vinyl Gold
 Oxidation of the vinyl gold intermediate allows access to Au(III) oxidation state and corresponding nucleophilic trapping

O
O
O

reductive
elimination
R

O

- AuI

R'

AuIII

+ H2O

O

O

O

O

AuIII

AuIII

[O]

O

R

R'

R

R'

R

R'

9 examples
56-78% yield

O

O

R
R'

6-endo-dig
O

O

[Au]
[3,3]-rearrangement

O

O

O

AuI



R

R
R'
[Au]+

O

[Au]
R'

R

R'

α-carbonyl
vinyl gold

 A variety of intermolecular nucleophilic functionalizations can be envisioned to access α-substituted enones and enals
Peng, Y. Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 5062-5063

Gold Cross-Coupling
 Addition of boronic acids under semi-aqueous conditions readily provides α-aryl enones and enals

O

O

- AuI

Ar

Ar

reductive
elimination
R

O

ArB(OH)2
AuIII

AuIII

[O]

R'

R

R

R'

R'

15 examples
45-71% yield

O

O

R
R'

6-endo-dig
O

O

[Au]
[3,3]-rearrangement

O

O

O

AuI



R

R
R'
[Au]+

O

[Au]
R'

R

R'

α-carbonyl
vinyl gold

Zhang, G.; Peng, Y. Cui, L.; Zhang, L. Angew. Chem. Int. Ed. 2009, 121, 3158-3161
Related transformation for homo-allylic alcohols: Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 1474-1475

Major Milestones in Homogeneous Gold Catalysis
 Alkynophilic π–activation toward nucleophiles

 Asymmetric catalysis; counteranion control
coordinating
counteranion

Nu-H

P−Au+

Nu

R
Electrophile
(π) activation

Au

R

H

 Investigating & harnessing carbenoid character

R

R

non-coordinating
counteranion
X−

P−Au+

*

*
P−Au+

P−Au−Y
mono-cationic
species

di-cationic
species

Greater enantiocontrol

Lesser enantiocontrol

 Novel propargyl carboxylate reactivity
O

H

E
cyclopropanation

C-H insertion
[Au]

R

O

O

E+
R

[Au]

R

α-carbonyl
vinyl gold
C-C migration

proton shift

X− Y−

Nu
[O]

R'
O

Nu

R

R'

Recent Reviews on Homogeneous Gold Catalysis

Synlett ʻ10
Accounts

A Reactivity-Driven Approach to
the Discovery & Development of
Gold-Catalyzed Organic Reactions 

Shapiro, N. D.; Toste, F. D.
Synlett., 2010, 5, 675-691
Gold-Catalyzed Reaction of
Propargylic Carboxylates via
an Initial 3,3-Rearrangement
Wang, S.; Zhang, G.; Zhang, L.
Synlett. 2010, 5, 692-706

Chem Soc Rev - Special Issue ʻ08
GOLD: CHEMISTRY, MATERIALS & CATALYSIS

Chem Rev - Special Issue ʻ08

Coinage Metals in Organic Synthesis
Gold-Catalyzed Organic Reactions
Stephen, A.; Hashmi, K.;
Chem. Rev. 2007, 7, 3180–3211
Gold-Catalyzed Organic Transformations

Li, Z.; Brouwer, C.; He, C.
Chem. Rev. 2008, 8, 3239–3265
Alternative Synthetic Methods through New Developments
in Catalysis by Gold

Arcadi, A.
Chem. Rev. 2008, 8, 3266–3325

Gold catalysis in total synthesis

Stephen, A.; Hashmi, K.; Rudolph, M.
Chem. Soc. Rev. 2008, 37, 1766-1775

Gold-Catalyzed Cycloisomerizations of Enynes:
A Mechanistic Perspective
Jiménez-Núñez, E.; Echavarren, A.
Chem. Rev. 2008, 8, 3326–3350

N-Heterocyclic carbenes in Au catalysis

Marion, N.; Nolan, S. 
Chem. Soc. Rev. 2008, 37, 1776-1782

Ligand Effects in Homogeneous Au Catalysis
Gorin, D.; Sherry, B.; Toste, F. D.
Chem. Rev. 2008, 8, 3351–3378
and many more …



Documents similaires


dan gold catalysis
08 09 15 8h30 10h30 willand
organic chemistry reactions quickstudy
el3d 02
es7xg4p
el3d 05


Sur le même sujet..