s2 .pdf



Nom original: s2.pdfAuteur: SAID Anis

Ce document au format PDF 1.5 a été généré par Microsoft® Word 2010, et a été envoyé sur fichier-pdf.fr le 22/09/2013 à 10:49, depuis l'adresse IP 197.27.x.x. La présente page de téléchargement du fichier a été vue 1637 fois.
Taille du document: 955 Ko (8 pages).
Confidentialité: fichier public


Aperçu du document


Institut Préparatoire Aux Etudes d'Ingénieurs- El Manar

Maple : TD & TP

Maple : Principe et fonctionnement -2-

Rappel
Maple : système de calcul numérique et symbolique
Session Maple : Espace mémoire conserve toutes les opérations effectuées dans une feuille
de calcul (restart)
Il faut toujours commencer un nouvel exercice par restart ;
Bloc d’instruction : comporte une ou plusieurs lignes de commande
Ligne de commande : comporte une ou plusieurs instructions
Instruction : expression (commande, fonction, …) terminée par ; ou :
Bloc de texte : comporte une ou plusieurs lignes de texte, non interprété donc non exécuté
Commentaire : texte non interprété donc non exécuté (#)
Maple : Sensible à la casse, c’est-à-dire, il sait faire la différence entre caractères
majuscules et minuscules
Différence entre fonction et commande en fonction de parenthèses et d’arguments
% : fonction spécialisée retourne le dernier résultat (3%), peut être utilisée pour nommer
un objet Maple (seulement au début)
Aide de Maple : ctrl + F1, Menu Help, ?commande,…
Opérateurs : + , - , * , / , ** , ^ , . , := , mod, and , or , ; , : , ! , factorial(5)
Lettres grecques : alpha, beta, gamma, phi, pi, Pi
Fonctions mathématiques : exp, min, max, abs, floor, sqrt, ln
Quitter la feuille de calcul : done, quit, stop
Enregistrer et restaurer une feuille de travail. (File/Save AS, File/Open)

Nombres Entiers
Nombre premier : Est un nombre entier positif qui n’a de diviseurs que 1 et lui-même.
1. Le nombre 97 est-il premier ?
2. Le nombre 259 est-il premier ?
3. Déterminer si les nombres suivants sont premiers : 13 ; 18 ; 23 ; 27 ; 43 ; 89 ;
; 197 ; 319 ; 405.
4. Déterminer si les nombres suivants sont premiers : 13 ; 18 ; 23 ; 27 ; 43 ; 89 ;
; 197 ; 319 ; 405.
5. Quel est le plus petit nombre non nul divisible par deux nombres premiers distincts ?

said.anis@htomail.com

2013/2014

101
101

http://prepa-info.blogspot.com

1

Maple : TD & TP

Institut Préparatoire Aux Etudes d'Ingénieurs- El Manar

IGCD : Plus grand commun diviseur de deux ou plusieurs entiers
y est le IGCD de a et b si : y devise a et y devise b et n’existe pas un nombre y’ plus grand que y
qui vérifie les mêmes propriétés.

ILCM : Plus petit commun multiple de deux ou plusieurs entiers
X est le ILCM de a et b si : a devise x et b devise x et n’existe pas un nombre x’ plus petit que x
qui vérifie les mêmes propriétés.

Générer une valeur aléatoire :
Pour générer un entier de manière aléatoire avec la fonction rand : > rand();
Pour générer aléatoirement un entier entre min et max on utilise d’abord :
> nom := rand (min..max) ;
On obtient ensuite ce nombre par :
> nom ();
Si aucun paramètre n’est spécifié, Maple génère un entier de 12 chiffres positifs
Exemple :
1.
2.
3.
4.

Générer un nombre aléatoire
Vérifier si ce nombre est premier
Générer un nombre aléatoire situé entre le 12ème et le 15ème nombres premiers
Vérifier si ce nombre est premier

Nombres rationnels :
Maple propose une simplification de la fraction 300/45 mais ne donne pas une approximation sauf
si on lui demande.
Pour Maple, le nombre 300/45 n’est pas un nombre réel, c’est un nombre rationnel (une fraction
de deux nombres entiers).
Pour avoir une valeur approchée (nombre à virgule) du 300/45 on utilise le point décimal (.)
équivalent de notre virgule décimale (,), donc on écrit 300./45 ; ou bien la fonction evalf (eval to
float).
Syntaxe :

evalf (expr) ;

Exemple : > evalf(300/45);
Pour les valeurs approchées, le nombre de chiffres significatifs par défaut égal à 10, y compris la
partie entière. Les nombres réels ainsi approchés sont appelés nombres flottants (float dans la
terminologie Maple).
On peut modifier la précision des nombres réels avec : evalf (expr, précision) ;

said.anis@htomail.com

2013/2014

http://prepa-info.blogspot.com

2

Maple : TD & TP

Institut Préparatoire Aux Etudes d'Ingénieurs- El Manar

Digits :
Digits est une variable d’environnement qui donne le nombre de chiffres significatifs utilisés dans
les calculs faisant intervenir des nombres à virgule.
Par défaut, à la création d’une nouvelle session Maple, Digits = 10; mais on peut modifier sa
valeur, par exemple en passant la commande.
Digits := n ; n le nombre de chiffres significatifs lors de l’appel de evalf.
> Digits := 20;
Par exemple pour obtenir une approximation de sin(Pi) avec 20 chiffres significatifs on tape par
exemple :
> evalf (sin(Pi) ,20);
Ou
[> Digits := 20; evalf (sin (Pi/6));
Essayer :
>
>
>
>
>
>
>
>
>

evalf (sin (Pi/6));
evalf (exp (- Pi /2)
Digits := 4;
evalf (sin (Pi/6));
evalf (exp (- Pi /2)
restart; # ou Digits
evalf (sin (Pi/6));
evalf (exp (- Pi /2)
evalf ((1+2)/ (3+4))

,30) ;
,30) ;
:= 10;
,30) ;
;

Le mélange dans une expression de nombres sous forme de fraction et sous forme décimale
entraîne l’écriture du résultat sous forme décimale ;
> 1/2+0.25; 1/2+1/4; sqrt (0.25); sqrt (1/4); 1.024+Pi;
La commande evalf permet de passer d’une fraction à un nombre décimal, on peut aussi effectuer
l’opération inverse :
> evalf (5/2,2);

2.5
> convert (2.5, fraction);
5
2

On peut utiliser la notation suivante pour les nombres réels :
> 2.5E+6;

said.anis@htomail.com

2013/2014

http://prepa-info.blogspot.com

3

Maple : TD & TP

Institut Préparatoire Aux Etudes d'Ingénieurs- El Manar

Fractions rationnelles
Voici un exemple de fraction rationnelle
> F := (3*x^4+4*x^2+2*x+1)/(x**3+2*x+1);
3 x 4 4 x 2 2 x 1
F :=
x 3 2 x 1
> denom(F);

x32 x1

> numer(F);
3 x44 x22 x1

Calcul de sommes :
Maple permet de calculer des sommes à l’aide de la fonction sum. Ainsi pour somme une
expression u(i) pour i variant de a à b on écrit :
> sum(u(i),i=1..100);
Exemple :
> sum(i^2,i=1..100);

338350
Maple permet aussi de calculer des sommes indéfinies, c’est-à-dire des sommes dont la borne
supérieure n’est pas fixée.
Exemple :
> sum(i^2,i=1..n);
1
1
1
1
( n1 )3 ( n1 )2 n
3
2
6
6

Pour obtenir une forme inerte, on utilise la commande Sum avec un « S » en majuscule comme
suit :
Exemple :
> Sum(i^2,i=1..n)=sum(i^2,i=1..n);
n
1
1
1
1
 i 23 ( n1 )32 ( n1 )26 n6
i  1
Si une série diverge, Maple renvoie alors l’infini :
Exemple :
> Sum(i^2,i=1..infinity)=sum(i^2,i=1..infinity);


 i 2

i  1

said.anis@htomail.com

2013/2014

http://prepa-info.blogspot.com

4

Maple : TD & TP

Institut Préparatoire Aux Etudes d'Ingénieurs- El Manar

Calcul de produits :
Maple permet de calculer des produits à l’aide de la fonction product. Pour calculer le produit
des u(i) pour i variant de a à b :
> product(u(i),i=a..b);
b

 u( i )

i  a

> product(i^2,i=1..10);

13168189440000
Pour obtenir la forme inerte en entrant la fonction avec un « P » en majuscule :
> Product(i^2,i=1..10);
10

 i2

i  1

Nombres complexes :
Un nombre complexe est une expression : a+b*I
a et b : sont rationnels ou réels (dans ce dernier cas les calculs seront donc approchés),
Le symbole I : désigne le nombre complexe noté i dans le cours de Mathématiques. Ce symbole
est réservé comme Pi.
Notons que : i s’écrit en majuscule : I. Maple remplace directement I2 par −1
Exemple :

> 3-7*I;

Si le nom z désigne un complexe, alors :
- Re(z) : désigne sa partie réelle,
- Im(z) : désigne sa partie imaginaire,
- conjugate(z) : désigne son conjugué,
- abs(z) : désigne son module, renvoie |z|
- argument(z) : désigne son argument (Attention, sous Maple, 0 est d’argument 0 !).
Exemple :
> z:3+4*I;
> z:= 3 + 4 I
> z*(1+sqrt(2)*I);
> Re(z); Im(z); conjugate(z); abs(z) ; argument(z)

said.anis@htomail.com

2013/2014

http://prepa-info.blogspot.com

5

Maple : TD & TP

Institut Préparatoire Aux Etudes d'Ingénieurs- El Manar

evalf :
On peut appliquer la fonction evalf a un nombre complexe afin d’obtenir une valeur approchée de
sa partie réelle et de sa partie imaginaire.
evalc:
Dans le cas où Maple ne retourne pas une écriture sous forme cartésienne (forme algébrique), on
pourra lui forcer la main en utilisant la fonction evalc : (partie réelle + i * partie imaginaire)
> evalc(%);
Exemple :
> (sqrt(2) + I)*(1 + I);
> evalc((sqrt(2) + I)*(1 + I));
polar :
Permet de définir un complexe par ses coordonnées polaires sous la forme trigonométrique;
Permet le passage d’une forme algébrique à une forme trigonométrique.
Exemple :
> z : = polar (7, Pi/3) ;
> evalc (polar (7, Pi/3)); # z désigne le complexe de module 7 et
d’argument π/3.

Expressions et fonctions
Développer une expression
Maple est capable de développer et de réduire une expression algébrique, par exemple pour
développer (x+1)(x-2), on frappe successivement :
> expand ((x+1)*(x-1));

Entree

Exercice :
Développer les expressions suivantes :
( x1 )3 ( 2 x1 )

( x1 ) ( 2 x23 x1 ) ( 4 x3 )

( x1 )4 ( 2 x1 )3

Factoriser une expression
2
Maple est capable de factoriser une expression algébrique, par exemple pour factoriser x 1 on
frappe successivement :

> factor(x**2-1);

said.anis@htomail.com

Entree

2013/2014

http://prepa-info.blogspot.com

6

Maple : TD & TP

Institut Préparatoire Aux Etudes d'Ingénieurs- El Manar

Exercice :
Factoriser les expressions suivantes :
x37 x28 x16

x33 x23 x1

46 x38 x451 x299 x162

Substituer une valeur dans une expression :
Pour remplacer x par 10 dans l’expression 2 x1 , il suffit d’entrer dans Maple les commandes
suivantes :
> subs(x=10,2*x+1); Entree
Exercice :
Que vaut l’expression x33 x2

2
pour x prenant la valeur 0 ? la valeur
x1

3 ? la valeur n+1

avec n entier positif non nul ?

Définir une fonction :
On considère la fonction f définie sur R par f( x )2 x1 . Cette function se définie en Maple à
l’aide des commandes suivantes :
> f:=x->2*x+1; Entree
On obtient alors l’image de réel 3 en évaluant : > f(3);
Exercice : On considère la fonction g définie sur R par g( x )
g de -5, -3, ½, 100,

2,

5

Exercice :
On considère la fonction h définie sur]-∞,-1] U [1, +∞ [par
par h de -10, -5, 0,

2,

3 x 2 1
calculer les images par
x 2 x 1

h( x ) x 2 1 , calculer les images

10 . Que peut-on remarquer ?

Représenter une fonction :
Pour représenter graphiquement la fonction f pour x ∈ [-10,10], on entre les commandes :
> plot(f(x),x=-10..10);
Exercice :
Représenter graphiquement sur [-10,10] les fonctions g et h.

said.anis@htomail.com

2013/2014

http://prepa-info.blogspot.com

7

Institut Préparatoire Aux Etudes d'Ingénieurs- El Manar

Maple : TD & TP

Exercices d’application :
1. Quelles sont les coordonnées cartésiennes et polaires du point du plan associé au nombre
complexe : i(4i-1)/(2i+3)2
2. A quoi sert la fonction nextprime ? Utiliser la sur ces exemples :
3. Quels sont les facteurs premiers communs de 16033248 et 5566176 ?
4. Donner le plus grand diviseur commun et le plus petit multiplicateur commun pour les
paires suivantes : (145, 14), (106, 120), (16033248, 5566176).
5. Vérifier si les nombres suivants sont des nombres premiers : 0, 7, 15, 2564.
6. Combien y a-t-il de nombre premiers entre 150 et 200 ?
7. Vérifier si 22n +1 est un nombre premier pour n = 1, 2, 3, 4, 5.

said.anis@htomail.com

2013/2014

http://prepa-info.blogspot.com

8


s2.pdf - page 1/8
 
s2.pdf - page 2/8
s2.pdf - page 3/8
s2.pdf - page 4/8
s2.pdf - page 5/8
s2.pdf - page 6/8
 




Télécharger le fichier (PDF)


s2.pdf (PDF, 955 Ko)

Télécharger
Formats alternatifs: ZIP



Documents similaires


s2
s1
maple manipulation des variables
maple manipulation des expressions
cm1
matlab1

Sur le même sujet..