184811263 Machine Training PM Synchronous Ansoft Maxwell .pdf



Nom original: 184811263-Machine-Training-PM-Synchronous-Ansoft-Maxwell.pdfTitre: PowerPoint PresentationAuteur: EM AE

Ce document au format PDF 1.3 a été généré par Acrobat PDFMaker 5.0 for PowerPoint / Acrobat Distiller 5.0.5 (Windows), et a été envoyé sur fichier-pdf.fr le 26/02/2014 à 20:35, depuis l'adresse IP 197.205.x.x. La présente page de téléchargement du fichier a été vue 2468 fois.
Taille du document: 2.7 Mo (111 pages).
Confidentialité: fichier public


Aperçu du document


Permanent Magnet Synchronous Machine
XY Plot 2

Ansoft Corporation

PMSM_CT

1.20

Curve Inf o
Bradial
Setup1 : Transient
Time='0ns'

1.00

0.80

Bradial

0.60

0.40

0.20

0.00

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Norm alizedDis tance

Cogging Torque

Ansoft Corporation

PMSM_CT_Verify

XY Plot 2

Ansoft Corporation

Core Loss

Ansoft Corporation

3.00

PMSM_OC_EMF

1.20

Curve Info

PMSM_OC_EMF

Optimized Design
Setup1 : Transient

150.00

2.2271

Moving1.Torque
Imported
Nominal Design

2.00

Curve Info
CoreLoss
Setup1 : Transient

1.00

Y1 [V]

50.00

0.00

Curve Info

1.00
0.5877

0.80
0.4354

CoreLoss [kW]

Y1 [NewtonMeter]

100.00

0.1402

0.00

-1.00

0.60

0.40

InducedVoltage(PhaseA)
Setup1 : Transient
InducedVoltage(PhaseB)
Setup1 : Transient

-50.00

-2.00

InducedVoltage(PhaseC)
Setup1 : Transient

0.20
-100.00

-3.00
0.00

1.00

MX1: 0.6379

-150.00
0.00

2.00

4.00

Time [ms ]

6.00

8.00

10.00

Ansoft Maxwell Field Simulator V12 – Training Manual

2.00

3.00

4.00
Time [s]

5.00

6.00

MX2: 5.4031

7.00

8.00

0.00
0.00

2.00

4.00

Time [ms]

6.00

8.00

10.00

P1-1

Permanent Magnet Synchronous Machine: Contents

RMxprt

Maxwell: Open Circuit Back EMF
Basic Theory
Review Example
Add Unique Winding Arrangement
Setup Parametric Problem
Export Design to Maxwell 2D

Maxwell: Cogging Torque
Review Maxwell Setup
Create Variables
Apply Mesh Operations
Solve Nominal Problem
Setup Optimization Problem
Review Pre-Solved Optimization
Results

Define Material Core Loss
Characteristics
Set Lamination and Stack Factor
Consider Power Loss in Magnets
Solve Problem and Review Results

Maxwell: Rated Condition – Functional
Voltage Source
Modify Rotor Geometry using UDP’s
Winding Setup Definitions and Variable
Definition
Choosing Optimal Time Step
Solve Problem and Review Results

Drive Design
Create a Machine Model
Use the Model in Circuit Simulation

Notes:
1. RMxprt/Maxwell V12 or higher is required
2. Basic knowledge of electric machine is required
3. Basic understanding of Finite Element is required
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-2

Electric Machine Design Suite
A Complete Solution for Modern Electric Machines and Drives Design

Design
Requirements
9
9
9
9
9
9
9
9
9
9

Fast Analytical Solution:
Narrow the Design Space

Size/Weight
Efficiency
Torque
Speed
Cogging/Ripple
Inverter Matching
Thermal
Stress
Manufacturability
Cost

Transient Analysis
using FEA
Parametric Analysis
Simultaneous Equations:

Magnetostatic/Eddy Current
Analysis using FEA

IGBT

D2

IGBT

if − C

duc
=0
dt

mα + λω = Tem + Texternal

Motion Equation

ω
FM_ROT

IGBT
IA
A_PHASE_N1

IB

ROT2

A

+
VBC V

+

T

ROT1

A

B_PHASE_N1

IC
A

EMF

di
dA
Circuit Equation: d f
dΩ + R if + L f + uc = us
S f a ∫∫ dt
dt

D3
ECELink

175

∂A
− σ∇V + ∇ × Hc + σv × ∇ × A
∂t

Nfl

Parametric Analysis
Optimization

Parametric Analysis
Optimization

EMF

Field Equation: ∇ ×υ∇ × A = J s − σ

C_PHASE_N1

175

IGBT

IGBT
ECE

A

AM_IGB
ICA:

PP:=

EQU

ON:=

theta_elect := PP * ECELink
theta := MOD(theta_elect

OFF:=
THRESH:=4
HYST:=

Torqu

Phase Curre
1.00

IA
IB
IC

500.0

Phase Voltag
To

400.0

300.0

V_A

200.0

Von Mises stress

200.0
0

0
-500.0

0

0

10.00m

-200.0

-100.0
0

-1.00

17.27mt

10.00

-300.0
0

17.27 t

10.00

17.27 t

Drive System using System Level
IGBT’s and Analytical Motor Model

Thermal and Stress Analysis

EMSSLink1
EMSSLink1
175

R5

MASS_ROTB1

R1

R3

E5

IA

RA

V

theta>90 AND theta<150

ctrl_6:=ON

C_PHASE_N2

+

R4

R6

theta>210 AND theta<270

ctrl_2:=ON

ctrl_1:=ON

ctrl_3:=ON

theta>90 AND theta<150

A

ICA:

AM_IGBT

theta>150 AND theta<210

ctrl_1:=ON
ctrl_2:=ON

theta>210 AND theta<270

ctrl_2:=ON
ctrl_3:=ON

ctrl_1:=OFF
ctrl_2:=OFF

ctrl_5:=ON

ctrl_2:=OFF
ctrl_3:=OFF

ctrl_3:=OFF
ctrl_4:=OFF

theta>270 AND theta<330

ctrl_3:=ON
ctrl_4:=ON

ctrl_5:=ON

Drive System Integration with
Manufacturer’s IGBTs
Ansoft Maxwell Field Simulator V12 – Training Manual

ctrl_3:=OFF
ctrl_4:=OFF

ctrl_4:=OFF
ctrl_5:=OFF

ctrl_5:=OFF
ctrl_6:=OFF
ctrl_4:=ON

theta>330 OR theta<30

V

ctrl_2:=OFF
ctrl_3:=OFF

ctrl_4:=OFF
ctrl_5:=OFF

ctrl_5:=OFF
ctrl_6:=OFF

VGE4

E4

E6

ctrl_6:=OFF
ctrl_1:=OFF

ctrl_6:=ON

C_PHASE_N1

175

R2

ctrl_1:=OFF
ctrl_2:=OFF

ctrl_5:=ON

B_PHASE_N2

RC 0.023

ICA:

AM_IGBT

ctrl_6:=ON

theta>30 AND theta<90

B_PHASE_N1

IC
A

EMF1

A_PHASE_N2

0.023

theta>150 AND theta<210

ctrl_1:=ON
ctrl_2:=ON

ctrl_6:=OFF
ctrl_1:=OFF

V

C_PHASE_N1

V

E4

E2

ctrl_1:=ON

ROTB2

RB
A

+
VBC

VGE4

A

ROTB1

0.023
A_PHASE_N1

IB

B_PHASE_N2

RC 0.023

C_PHASE_N2

R4

E6

RA
A

B_PHASE_N1

IC
A

R6

E2

IA

E1

E3

E5

A_PHASE_N2

0.023

175
R2

R3

R5

ROTB2

RB
A

+

EMF1

MASS_ROTB1

R1

175

A_PHASE_N1

IB

VBC

EMF2

ROTB1

0.023

A

E1

E3

+

EMF2

Equivalent Circuit Model : High
Fidelity Physics Based Model

theta>30 AND theta<90

ctrl_6:=ON

ctrl_4:=ON
theta>330 OR theta<30

ctrl_5:=ON

theta>270 AND theta<330

ctrl_3:=ON
ctrl_4:=ON

Complete Transient FEA -Transient
System Co-simulation
P1-3

RMxprt: Background
ASSM: Adjustable-Speed Synchronous Machine
Rotor speed is controlled by adjusting the frequency of the input voltage
Unlike brushless PMDC motors, ASSM does not utilize the position sensors.
Rotor can be either inner or outer type
Can operate as a generator or as a motor
Motor Mode:
Sinusoidal AC source
DC source via a DC to AC inverter

Generator Mode:
Supplies an AC source for electric loads

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-4

ASSM: Background
Input voltage U is the reference
phasor, let the angle I lags U be
φ, the power factor angle

I = I∠ − ϕ
Let the angle I lags E0 be ψ. The
d- and the q-axis currents can be
obtained respectively as follows:

Id 
 sinψ 
I =   = I

I
cos
ψ


 q

ψ = tan

−1

Id
Iq

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-5

ASSM: Background

OM can be used to determine the
direction of E0
OM = U − I ( R1 + jX 1 + jX aq )
Let the angle E0 lags U be θ,
which is called the torque angle
for the motor, then the angle ψ is
ψ = ϕ −θ
For a given torque angle θ :
Xd
− R
 1

R1   I d  U cosθ − E0 
=

X q   I q  − U sin θ


Solving for Id and Iq yields:
Id 
1
=
I 
2
 q  R1 + X d X q

 X q (U cosθ − E0 ) + R1U sin θ 
 R (U cosθ − E ) − X U sin θ 
0
d
 1


Ansoft Maxwell Field Simulator V12 – Training Manual

P1-6

ASSM: Background
The power factor angle φ is

ϕ = ψ +θ

The Input electric power is

P1 = 3UI cos ϕ

The Output mechanical power is

P2 = P1 − ( Pfw + PCua + PFe )

Pfw : Frictional and Wind Loss
PCua: Armature Copper Loss
PFe : Iron-core Loss

Torque:

T2 =

P2

ω

Efficiency:
η=

P2
× 100%
P1

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-7

RMxprt: Base Project
Open the RMxprt project located on your desktop by double clicking on

PM_SyncMotor.mxwl

Save the project under a new name:
File > Save As > c:\Training\PM_SyncMotor.mxwl

Select Setup1 under Analysis and click the Right Mouse Button (RMB)
and Choose Analyze

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-8

RMxprt: Results
Select Setup1, click the RMB and choose Performance

Choose a
Solution Set

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-9

RMxprt: Results
Select Setup1, click the RMB and choose Performance

Choose a
Performance
Curve

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-10

RMxprt: Add New Winding Arrangement
Double click on Stator > Winding
Click on Whole-Coiled
Select Editor

1
2

3

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-11

RMxprt: Add New Winding Arrangement
In the Winding Editor Panel, click the RMB and select Edit Layout

Deselect Constant Pitch
Change the Layout as shown

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-12

RMxprt: Add New Winding Arrangement
View the new winding arrangement by placing the mouse over one of
the A phase coils in the drawing window and click the RMB selecting

Connect One Phase Coils.

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-13

RMxprt: Performance
Solve the problem by selecting Setup1 under Analysis and click the
Right Mouse Button (RMB) and Choose Analyze
Select Setup1, click the RMB and choose Performance

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-14

RMxprt: Add Variables
Click on Winding and in the Properties window, next to Conductors Per
Slot type in CPS

1
2
Click on Stator and in the Properties window, next to Length type in

Depth

1
2

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-15

RMxprt: Add Variables
Click on Rotor and in the Properties window, next to Length type in

Depth

Select menu item RMxprt > Optimetrics Analysis > Add Parametrics

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-16

RMxprt: Parametric Setup
Click on Add and setup the two variables as follows:

4

2

1

3

Click on the Calculations Tab > Setup Calculations and add the following
Current > RMSLineCurrentParameter
Power > OutputPowerParameter
Misc. > EfficiencyParameter

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-17

RMxprt: Parametric Solution
Select ParametricSetup1 under Optimetrics, click the RMB and Analyze

Select ParametricsSetup1, click RMB and select View Analysis Results
Select Table and then click on Efficiency Parameter

Efficiency increased from 89% to over 98% while maintaining output
power
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-18

RMxprt: Create Maxwell Design
Select Setup1, click the RMB and select Create Maxwell Design

2

4

deselect

1

Choose
3
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-19

Maxwell 2D: Base Design

Motion
Boundaries
Winding

Material Assignment

Mesh

Soln. Setup
Results

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-20

Maxwell 2D: Cogging Torque, Excitation
Select the PhaseA winding, click the RMB and select Properties
Change the Type to Current with a value of zero

Repeat this for PhaseB and PhaseC

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-21

Maxwell 2D: Cogging Torque, Mesh Ops
Select Length_Magnet under Mesh Operations, click the RMB and
select Properties

Decrease the size of the element
by half. Just type in 3.75/2

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-22

Maxwell 2D: Cogging Torque, Mesh Ops.
Select Length_Main under Mesh Operations, RMB and select Properties

Decrease the size of the element
by 4. Just type in 10.96/4

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-23

Maxwell 2D: Cogging Torque, Mesh Ops.
Select SurfApprox_Mag under Mesh Operations, RMB and select

Properties

Decrease the length of the
“Maximum Surface Deviation” to
190 nm. This yields an angular
segmentation of Θ = 0.25 deg.

D = r (1 − cos(Θ / 2))
r is the inside radius of the stator
which is 81mm

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-24

Maxwell 2D: Cogging Torque, Mesh Ops.
Select SurfApprox_Main under Mesh Operations, RMB and select

Properties

Decrease the length of the
“Maximum Surface Deviation” to
190 nm

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-25

Maxwell 2D: Cogging Torque, Mesh Ops.

Three possible operations:
D

D = Maximum Surface
Deviation
D = r (1 − cos(Θ / 2))

r

Θ = Maximum Surface
Normal Deviation

Θ

ri

ro
Ansoft Maxwell Field Simulator V12 – Training Manual

2 * ri
2
= ShapeFactor (2 D )
ro
1
3 * ri
= SF (3D)
AR=2
ro
1
Aspect Ratio of Cells,
AspectRatio =
SF
not of triangles
P1-26

Maxwell 2D: Cogging Torque, Mesh Ops.
Select Band in the modeler tree, RMB and select Properties

Decrease the SegAngle value to
0.25 degrees

NOTE!: This small value for angular segmentation, 0.25deg, is needed
only for very sensitive calculations such as Cogging Torque
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-27

Maxwell 2D: Cogging Torque, Mechanical Setup
Select Motion Setup1 under Model, RMB to select Properties
Select Mechanical Tab and change speed to 1 deg/sec

Select Setup1 under Analysis and RMB to select Properties

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-28

Maxwell 2D: Cogging Torque, Solution Setup
Change to Save Fields tab

1

3

2

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-29

Maxwell 2D: Cogging torque, Results
Solve the cogging torque problem by selecting
Setup1 under Analysis, RMB and select
Analyze:
Once the problem is solved double click on

Results > Torque
Torque

Ansoft Corporation

Maxwell2DDesign1

3.00

Click the RMB in the plot
and select Export Data.
Save the plot on the
desktop.

Curve Info
Moving1.Torque
Setup1 : Transient

2.00

Moving1.Torque [NewtonMeter]

1.00

0.00

-1.00

-2.00

-3.00
0.00

5.00

Time [s]

Ansoft Maxwell Field Simulator V12 – Training Manual

10.00

15.00

Since the speed is held
constant at 1.0 deg/sec,
the X-Axis represents
both time and position,
i.e. 10 sec = 10 deg
P1-30

Maxwell 2D: Cogging torque, Results
Select menu item View > Set Solution Context, and choose zero
seconds.

In the drawing window hit
CTRL+A to select all objects,
RMB to select Fields > A >

Flux_Lines

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-31

Maxwell 2D: Cogging torque, Results

Double Click on
Legend to change
plot properties

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-32

Maxwell 2D: Cogging torque, Results
Select Flux_Lines1 under A under Field Overlays, RMB to select

Animate

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-33

Maxwell 2D: Cogging torque, Rename Design
Rename Maxwell2DDesign1 by selecting its name in the project tree,
RMB and select Rename. Change the name to PMSM_CT for
Permanent Magnet Synchronous Motor Cogging Torque.

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-34

Maxwell 2D: Cogging torque, Variables
Select CreateUserDefinedPart under Mag_0 under NdFe30_N and
choose Properties

3

1

2
In the Value field
type in the name
PoleEmbrace

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-35

Maxwell 2D: Cogging Torque, Optimization Variables
Change the field for the ThickMag to MagnetThickness and accept the
default value of 7.5mm

2

1

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-36

Maxwell 2D: Cogging Torque, Optimization Variables
Change the field for the Offset to PoleOffset and accept the default value
of 0mm.

2

1
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-37

Maxwell 2D: Cogging Torque, Optimization Variables
Select CreateUserDefinedPart under InnerRegion under Vacuum and
choose Properties

1

2
In the Value field
type in the names:
PoleEmbrace
MagnetThickness
PoleOffset

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-38

Maxwell 2D: Cogging Torque, Optimization Variables
Select CreateUserDefinedPart under Rotor under M19_26G_SF0.950
and choose Properties

1
2
In the Value field
type in the names:
PoleEmbrace
MagnetThickness
PoleOffset

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-39

Maxwell 2D: Cogging Torque, Optimization Variables
Select menu item Maxwell 2D > Design Properties and change the value
of the variables just defined:

Select the Optimization radio button and Include each variable:

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-40

Maxwell 2D: Cogging Torque, Optimization Variables
Modify the variable to see the effect on the geometry

For this exercise, the range for each is:
6.5 mm < MagnetThickness < 9.5 mm
0.6 < PoleEmbrace < 0.9
0 < PoleOffset < 30 mm

PE

MT

Pole Offset
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-41

Maxwell 2D: Cogging Torque Optimization, Air Gap Arc
Create an arc in the air gap to be used for post processing purposes, by
selecting menu item Draw > Arc > Center Point

Using the mouse select the origin, any point in the air gap along the X
axis and any point in the air gap at the 45 degree angle. Any value used
if valid, it will be modified in the next step.
Double 3
click to end

1
2
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-42

Maxwell 2D: Cogging Torque Optimization, Air Gap Arc
Select CreateAngularArc under CreatePolyline under Polyline1 under
Lines, RMB and select Properties

Change the value for the starting point to 80.8, 0, 0. This will place the
arc between the band object and the stator ID

Select Polyline1. In the Properties window change its name to AG_Arc
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-43

Maxwell 2D: Cogging Torque Optimization, Variables
Select menu item Maxwell 2D > Field > Calculator
Perform the following commands to calculate the radial component of
the flux density in the air gap
Quantity > B
Scal? > Scalar X
Function > PHI
Trig > cos
Multiply *
Quantity > B
Scal? > Scalar Y
Function > PHI
Trig > sin
Multiply *
Add +
-- this gives Bx*cos(PHI) + By*sin(PHI)
Add … > Name: Bradial
-- this adds the express to the stack

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-44

Maxwell 2D: Cogging Torque Optimization, Variables
Continue to calculate the average radial component of the air gap flux
density
Select Bradial under Named Expressions
Copy to Stack
Geometry > Line > AG_Arc
Integrate
Number > Scalar > Value = 1
Geometry > Line > AG_Arc
Integrate
Divide / -- this give the average radial flux density in the air gap
Add … > Name: Brad_Avg -- this adds this expression to the stack

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-45

Maxwell 2D: Cogging Torque Optimization, Variables
Continue to calculate the area of the permanent magnet
Number > Scalar > Value = 1
Geometry > Surface > Mag_0
Integrate
Number > Scalar > Value = 1e6 -- this converts from m2 to mm2
Multiply *
Add … > Mag_Area -- this adds this expression to the stack

Select the Maxwell 2D Design PMSM_CT and in the Properties window
change the variables back to their default values

Even though the design variables and thus the geometry has changed,
once the design variables are set to their previous values, the solution is
automatically reloaded; there is no need to solve the problem again.
Ansoft Maxwell Field Simulator V12 – Training Manual

P1-46

Maxwell 2D: Cogging Torque Optimization, Variables
Plot the radial flux density in the air gap by selecting Results, RMB to
select Create Field Report > Rectangular Plot

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-47

Maxwell 2D: Cogging Torque Optimization, Brad AG
Plot B_rad on the AG_Arc

5
1

4
2
3

6

10
7

Ansoft Maxwell Field Simulator V12 – Training Manual

8

9

P1-48

Maxwell 2D: Cogging Torque Optimization, Brad AG
Plot of B radial in air gap at time zero
XY Plot 2

Ansoft Corporation

PMSM_CT

1.20

Curve Inf o
Bradial
Setup1 : Transient
Time='0ns'

1.00

Click the RMB
in the plot
window and
select Export
Data. Save the
plot on the
desktop.

0.80

Bradial

0.60

0.40

0.20

0.00

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Norm alizedDis tance

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-49

Optimization: Solution Setup
Change the Stop Time of the Simulation from 15 seconds to 3.75 sec.
The cogging torque waveform is symmetric after 3.75 deg (equal to 3.75
sec) and to save simulation time we only need to solve up to this point.
Select Setup1 under Analysis and RMB to select Properties

Ansoft Maxwell Field Simulator V12 – Training Manual

P1-50


Aperçu du document 184811263-Machine-Training-PM-Synchronous-Ansoft-Maxwell.pdf - page 1/111
 
184811263-Machine-Training-PM-Synchronous-Ansoft-Maxwell.pdf - page 3/111
184811263-Machine-Training-PM-Synchronous-Ansoft-Maxwell.pdf - page 4/111
184811263-Machine-Training-PM-Synchronous-Ansoft-Maxwell.pdf - page 5/111
184811263-Machine-Training-PM-Synchronous-Ansoft-Maxwell.pdf - page 6/111
 




Télécharger le fichier (PDF)





Documents similaires


184811263 machine training pm synchronous ansoft maxwell
189165495 electrical machine design using rmxprt
iust v10n4p324 en
simulations analysis with comparative study of a pmsg
pmdg 737ngx tutorial 1
chen2015

Sur le même sujet..




🚀  Page générée en 0.083s