IBHM 701 721 .pdf
Nom original: IBHM_701-721.pdfTitre: IBHM_AnsChv6.qxdAuteur: Paul Dossett
Ce document au format PDF 1.3 a été généré par Adobe Acrobat 7.0 / Acrobat Distiller 7.0.5 for Macintosh, et a été envoyé sur fichier-pdf.fr le 07/06/2014 à 21:19, depuis l'adresse IP 87.66.x.x.
La présente page de téléchargement du fichier a été vue 626 fois.
Taille du document: 401 Ko (21 pages).
Confidentialité: fichier public
Aperçu du document
Answers
6 a Consistent. Lines intersect giving unique solution.
7 p 3
b Consistent. Same line giving infinite solutions.
Chapter 11
Exercise 4
1 a x 1, y 9, z 13
b x 10, y 10, z 36
c x 2, y 4, z 3
d x 2, y 1, z 2
2 b x 2, y 1, z 4
c x 1, y 1, z 2
d x 4, y 5, z 2
1
3 c x , y 1, z 2
2
d x 2, y 3, z 2
4 a Determinant 6. Unique solution.
4 c Determinant 0. No unique solution.
6 c x
35
43
13
,y ,z
66
66
33
7 c x
19 5l
7l 11
, y l, z
13
13
7 h x 4, y 4, z 6
e x
8 d No solution.
b c 3
4b
b
12 a
38
20
3l
44 4l
, y l, z
11
11
13 a 2k2 11k 37
˛
5l 10
2
b x
5
x
0
k 1≥ £y≥ £ k 2≥
k
z
2k 1
˛
50
20≥
22
13 a a 7, b 2
2 l 1 or 6
˛
1
k
¢
k2 1 1
3 a
a 1
˛
b
3
≤
2
3 a AB ¢
c z
k2 5k 4
8 3k
1
≤
k
0
2
15
1
∂
10
1
18
b x
˛
5l 11
17 3l
, y l, z
51
17
˛
1
c=4
2
15 a 1
8 b k 3
16
b x 1, y k
d If k
˛
˛
b x 1, y 2, z 1
˛
8
3
c Since M is singular, A must be singular.
Chapter 12
1 a
b k
˛
y2 18z1 11z2 3z3
17
3
5
1
5
c No solution.
2
1
7
,y ,z
15
5
9
14 a 36
k3 2k2 29k 22
k2 6k 14
k2 5k 4
,y
z
8 3k
8 3k
8 3k
7 b Solution is not unique. x
39
16
18
3
59
28
,y ,z
19
19
19
Review Exercise
5 d Otherwise x
36
10 b £14
15
b x
b x 2, y 1, z 1
1
5
1
9 a ¶
10
1
6
˛
k 3
3
1
b Determinant 0. No unique solution.
5
15
7
,y
,z
44
44
22
f x 1, y 2, z 3
b k 7.86, 2.36
1 R is an n p matrix S is an m p matrix
1
5 a £1
1
55
40
64
,y
,z
47
47
47
5
7 a x
c x l, y l, z 2l
Chapter 11
b x
4l
2l 3
2
8
b x
, y l, z
+ l, y l , z
–l
2
4
5
5
4 2l m
2
7
d x l, y m, z
e x , y 0, z
f No solution. g No solution.
3
5
5
d x 0, y 2, z 3
a x 2l 3, y l, z
8
2 a x 3, y 2, z 4
5 a x 1, y 1, z 1
74
3
9
,y ,z
19
19
19
6 a x
1
2
,z
3
3
3 a x 4, y
d Determinant 0. No unique solution.
1
1
d x ,y ,z 2
4
2
5 c x 1, y 2, z 4
10 a 0
c Consistent. Same line giving infinite solutions.
8 l 6, x 1, y 1
11 k 5
4 x 1, y 8
8
there is no solution.
3
6 a 1, b 3
7 a 3p 3q r 0
9 p 3, q 5
10 a c 2.5, 0.5, 2
12 b c 3
a 4, b 1
c x
1 7l
11l 7
, y l, z
2
2
y1 16z1 36z2 58z3
17
˛
˛
˛
˛
y3 13z1 12z2 17z3
˛
˛
˛
˛
Exercise 1
b
a
b 冟AB冟 213
1
3
b 0,
1
4 ¢ ≤
3
1
2
c 8
5 a 234
c a
8
7
b 3
b 253
c 290
c c 6
13
2
8 §
¥
13 23
2
2 a PQ i 4j
d 229
e 221
b 冟PQ冟 217
f 257
6 a Parallel
b Parallel
5
6 c Not parallel
d Not parallel
7 a c 6
b c 7
9 ¶
262
6
262
1
∂
10 a Not parallel
b Not parallel
c Parallel
262
701
Answers
4
QR ¢ ≤
6
2
11 PQ ¢ ≤
3
1
QR £ 4 ≥
2
4
£ 2≥
1
12 b PQ
2
PR ¢ ≤
3
冟PQ冟 213
221
14 SU a b
221
冟RP 冟 214
4 c CB
b 6i 2j 9k
a2
c 2i 11j 2k
9 a BE
ii CA b a
7 b EF
b FH b a
12 c FA b c d
b 1
3 c 24.8°
5
d 2
e 54.0°
5 a
c 1a b2
iv AX
c CF
c AH b c
i
235
e 7
f 50.0°
c
1
b
3
v XD
3b
m n 3
1 a
14i 5j 8k
2 a
2123
2
3
219
i
3
15 2234 units2
j
d AG a b c
f 54
g 40
h 25
2 a 5
2
¢ ≤
8
b AC
6
¢ ≤
10
6 a
1
1b a2
2
b 2136
–25
4
c ¢ ≤
8
d §
b AC ¢
6k
≤
4c
1m n 2b
e ED a
m n 3
12m 3n 92b
m n 3
12 a DG d a b
b AH = d
b They are perpendicular.
4 p . q 14 , cos u
7
B 19
c 30
d 9
e 3
f 55
5 a and d, a and f, b and c, b and e.
g 26
6 a
3
2
h 1 3 a 58.7°
b –11
c
15
2
b 86.6°
d 3, 2
12 It is not a rhombus
b 14i 5j 8k
c 6
1
219
k
7 a
10
c 14i 5j 8k
18
2817
i
274
units2
2
3
2817
11
j
d 28i 10j 16k
22
2817
k
2341
units2
2
b
817
B 986
e 14i 5j 8k
8 a
12 26 units2
2
26
i
1
26
f 42i 15j 24k
j
1
26
k
b
13 4 2189 or 23024 units2
g 0
54
B 55
14 2850 units2
Area 10 21734 units2
Review Exercise
1
3
137
5 cos u
21314 units2 c 10.8i 9.6j 1.2k d
2146 or
2 a 6i 12j 12p 12 k b p 4 4 22 2 cos u 5 ¢
2
2
5 sin u
224817
p
6 0 8 0.70210 a 2u 11 a A has coordinates (2, 4, 6) B has coordinates 16, 3, 02 C has coordinates 14, 7, 6 2
2
3
3
10
2
11 b 50.2 units 11 c § ¥ d 96.3° e 22.6 units2 12 m
2
3
0
1 b
702
4
¥
–47
4
e BH b c a
b 6
16 PQ 25i 5j 10k and PS 6i 14j 2k
Chapter 12
4 a AB b a
Exercise 4
9239
2
219
d
2
b
3
d AF a
j
Chapter 12
b
3
£ 2 ≥
6
f 20i 25j 84k
ka b
1 k
d
iii BD b a
nb
m n 3
b 2425
1
k 9 x 17.9 or x 6.5 10 70.5°
235
16 It is a rectangle since ABˆ C is 90° but we do not know if AB BC
235
3
5
¢ ≤
20
e 3i 6j 49k
Exercise 3
c 29
d 129°
69
75
,y
53
53
3 q 1 Ratio is 1:2
c 74.7°
14 a AB c, BC a, AC c a, OB a c
Chapter 12
1 a 11
d 17i – 21j – 28k
b 2421
b2
k
1a b2
1 k
b
mb
m n 3
10 a BC b
1
1a
2
d OC
1
1b a 2
1 k
8 a i CD a
17 x
Exercise 2
1 g 13mi + 117mj – 91mk 2 a 17i 16j
1
1b
2
214
4
4
6
16 p , q , r
7
7
7
15 a 1, b 1
1 a 3i 4j k
9
冟SR冟 221
3
4
22
Chapter 12
8
冟QR冟 221
221
221
221
214
2
2
4
2
PQ ¶
∂ QR ¶
∂ SR ¶
∂ RP ¶
∂
221
221
221
214
1
2
1
1
12 d
7 a
3
12 a R £3≥
5
冟PR冟 213
3
RP £ 2≥ c 冟PQ冟 221
1
4
SR £ 2≥
1
1
4
冟QR 冟 252
3
≤
2
Answers
Chapter 13
Exercise 1
0
1
£ 2 ≥ + l £ 2≥
3
1
1 a r
b r i 2j l1i 4j 2k 2
3
7
b r £ 1 ≥ l £ 2≥
0
2
2
4
2 a r £1≥ l £ 3≥
2
1
5
4
≤ l¢ ≤
1
7
1 f r ¢
4
3
≤
2 e r ¢ ≤ l¢
3
0
3 a
4
0
c r £4≥ l £ 5≥
3
12
r i 2j 4k l13i j 5k2
3 b
3
4
r £ 2≥ l £ 7≥
3
3
x 3 4l, y 2 7l, z 3 3l
3 c
r j k l1i 3k 2
x l, y 1, z 1 3l
3 d
4
1
r £1≥ l £ 2 ≥
0
2
4 a
x 1 2l, y 1 3l, z 2 2l
4 c
x 2 4m, y 8 7m, z 1 6m
x 4 l, y 1 2l, z 2l 4 x
7
3
5 a r £ 6 ≥ l £1≥
4
2
6 b
r
7 a No
b Yes
c No
d Yes
e No
f Yes
3
1
d r £ 4 ≥ l £ 9≥
2
1
z 4
x 1
y 2
3
5
1 z
3
y 1
2
4
5
c r £ 0 ≥ m £3≥
3
4
z
2
y 5
z 1
x 2
3
1
4
x 2 3m, y 5 m, z 1 4m
b
x 1 2n, y 1 3n, z 7 n
d
f x 1 2t, y 6 5t
2
4
5
5
5
c r ¶ ∂ l • 2μ
3
3
7
2
2
2
4
l§ ¥
3
2
e r 3i j l12i j2
y 2
x 3
z 3
4
7
3
8 y
x 2
z 1
4
7
6
4
1
b r £ 5≥ m £ 3 ≥
1
5
2
2
c r £ 2≥ l £ 9 ≥
3
6
x 1 3l, y 2 l, z 4 5l
y 1
1 x
2 z
2
3
2
6 y
x 4
3
5
4 e x 4 3s, y 6 5s
5
2
§ ¥
1
1
y 1, x
d r 5i 2j k l13i 6j k 2
y 6
x 1
2
5
4
0
d r £ 1≥ n £ 1 ≥
5
1
1
6
1
r • 4 μ
d
l£ 1 ≥
3
9
4
3
4
6 a r £ 5≥ l £ 3 ≥
1
3
5
3
1
2
e r ¶ ∂ l £2≥
3
3
1
3
y 1
x 1
7 z
2
3
5
49
3
f r § ¥ l £ 4≥
7
0
2
6
3
6
5
8 r £ 7 ≥ l £ 9≥ Position vector is § ¥
2
1
2
0
9
11
7
9 Crosses the xy plane at 1 9, 7, 02 Crosses the yz plane at ¢0, 11, ≤ Crosses the xz plane at ¢ , 0, ≤
2
2
4
1 13
10 a r 2i j 5k l13i j k 2 Crosses the xy plane at 1 13, 4, 02 Crosses the yz plane at ¢0, , ≤ Crosses the xz plane at 1 1, 0, 42
3 3
2
1
10 b r £6≥ l £ 1≥ Crosses the xy plane at (9, –1, 0) Crosses the yz plane at (0, 8, 9) Crosses the xz plane at (8, 0, 1)
7
1
11 Crosses the xy plane at ¢
17
29 14
17 29
14
, , 0≤ Crosses the yz plane at ¢0, , ≤ Crosses the xz plane at ¢ , 0, ≤
15 5
4
12
3
3
Chapter 13
1 a Skew
2210
2 a
6
Exercise 2
b Intersect at the point (2, 1, 6)
b 217
c 1
0
3
3 AB: r £ 1 ≥ l £4≥
2
7
4 a 60.5°
b 36.3°
5
d
22
c Parallel
e Lies on line.
y 1
x
z 2
3
4
7
c 71.2°
d 88.4°
d Skew
f
e Skew
g Skew
27
0
1
AD: r £ 1 ≥ l £ 2 ≥
2
1
e 62.8°
f Parallel
223
x
y 1
2
z 2 Coordinates of C are (4, 7, 4)
5 a 2 Point of intersection is 11, 5, 3 2 6 r ¢
3
3
≤ t¢ ≤
8
2
7 a r = 2i – 3j + k + l(i + 8j – 3k) b p 34
703
Answers
Chapter 13
Exercise 3
1
1 a r. ¶
218
4
218
1
2
∂
1
b r. ¢
3
235
3
i
235
5
j
235
25
c r. • 0 μ
1
8
k≤
235
1
274
8
i
274
3
j
19
k≤
274
2354
17
2354
4
7
265
32
∂
i r. ¶
2354
1
230
4
j
265
2
i
2557
6
2557
11
∂
k≤
230
0
3
b 4x y 6
j
5
230
9 b r. 1i 5j k 2 1
86
11 r. 1i k2 1
i
2
r. £ 3≥
2
13
k
b
4
242
i
1
242
8
219
5
13
k≤
17
5
j
242
8
4
g r. ¢
219
226
1
j
10
i
21133
226
k r. ¢
k≤ 0
3
21133
3
213
i
15
c r. £ 3 ≥ 3
11
j
2
213
32
21133
63
k≤
21133
j≤
15
213
k
3
6
2
i j k
7
7
7
c
d
5
245
d r. 1i 11j 9k2 16
1
4 r. £ 3≥
7
d 4x 3y 8z 21
41
2
i
1
245
j
4
245
4
7 r. 113i 4j 11k2 31
k
units Distance between p1 and p2 is
227
14
units Distance of P2 to origin is
˛
265
13
217
17
289
units Distance between P1 and P2 is
˛
265
7
227
units
55
˛
265
units
units.
units.
14 r 14i 3j 7k 2 l12i 2j 5k 2
17
8
9
units Distance of P2 to origin is
units Distance between P1 and P2 is
units
23
23
23
b The line and the plane are parallel. c The line and the plane intersect. d The line and the plane intersect.
˛
˛
˛
˛
Exercise 4
1
b ¢4, , 2≤
2
c 11.0°
b 74.2°
c 13, 2, 92
d 64.5°
12
2178
e 90°
d a
f 55.9°
e ¢
3 a 11.7°
b 57.8°
2
7
b r £ 2≥ l £ 1≥
0
4
f r ¢
20 13 4
,
, ≤
3
9 3
51 1
, , 1b
7 7
f 116, 10, 72
c 17.6°
d 32.5°
c r 17i 3j 2 l12i k2
56
29
i
j≤ l136i 26j 25k2
25
25
6 48.5°
e 34.1°
f 5.51°
d r 1i 6j2 l1 3i 2j k2
1
3
7 a r £ 2 ≥ l£ 1 ≥
3
3
b 1 2, 1, 02
c 13.9 units.
Chapter 13
i
226
i
c Distance of P1 to origin is
4 e r = (–4i – 22j) + l(7i + 31j + 2k)
704
3
units Distance of p2 to origin is
227
Distance of plane from the origin is
b 23.2°
8 a a 3
3
Distance of plane from the origin is
289
4 a r 14i j2 l114i 17j 13k 2
2178
k≤
˛
289
1
2
, b
2
3
3
218
units.
˛
Chapter 13
1 i
218
15
k≤
r1 is not contained in the plane. r2 is contained in the plane.
16 a The line and the plane intersect.
2 a 45.0°
219
c 15x 13y 8z 38
c Distance of p1 to origin is
15 b r. 1i j k 2 9
1 a a 9,
1
j
b r. 15i 4j 15k 2 42
2
˛
8
219
j r. ¢
2557
10 P1 = r.(2i + 5j – 6k) = –41. Distance of P1 to origin is
289
3
i
219
r. 15j + 2k 2
2 a
8 The direction normals are equal. Distance
12 r. ¢
218
1
j
2557
3 a x 2y 7z 9
5 a
218
4
i
20
2354
1 l r. ¢
f r. ¢
274
7
1 h r. ¶
1
25
218
1 e r. ¢
d r. ¢
6
Review Exercise
j
5
2178
k
ii r.¢
3
2178
i
12
2178
j
5
2178
k≤
7
2178
iii 73.5°
2 b
230
units2
2
c
1
230
i
2
230
j
5
230
k
Answers
1 y
2 d AD has equation x 1
1
l £ 2≥
1
2
£1≥
1
3 c r
x
5 d 62.7° 6 a
2
3
18
4 b ¢ ,
5
36
, 4≤
5
y
1
5
1
8 b i j 2k
z
1
2
c r. £ 4 ≥
9
1
d r. £ 1 ≥ 3
2
9 a A lies in the plane. B does not lie in the plane
10 a 2i 2j k
b 1 4, 1, 4 2
12 a ii r 1 j k 2 l13i 11j k 2
4
c r. 1i 4j 2k2 9
221
13
d
5 13
16 a ¢4, , ≤
2 2
221
2
£3 ≥
0
f 326
1, 42
1
l£ 1 ≥
1
i
g
j
26
25
l£ 8 ≥
8
1
£ 3≥ BC
1
8 a AB
26
6
£ 1≥
4
c r
2k
1
£1≥
0
h 1 4, 5, 62
26
e r. 1i 3j 10k 2 87
d 3.16 units.
e ¢
722
6
c ii
c 2x 3y 4z 4 0
b (8, 5, 13)
˛
b 16,
d i 18, 20, 12 2
d 10, 13, 182
c 0.716
b c 2. Line of intersection.
14 a r 12i 3j 7k 2 t 13i j 3k 2
c 43.6°
1
2
£ 1 ≥ – l£ 2 ≥ b 3x 2y z 5
1
1
3 a ii r
13 12
, ≤
5 5
7 r
z 6 2l
ii 79.0°
˛
e 16.4°
5 a ¢1,
d 8.52
y 3
2 x
z 8
2
4
b
˛
13
≤
3
y 1 l
b i n1 6i 3j 2k and n2 2i 2j k
11 a r 12i j 4k 2 l13i j2
15 b
4 5
, ,
3 3
c ¢
e x 2 l
51
, 4≤
2
d ¢ 33,
0
1 10 8
b ¢ , ,
≤
3 3 3
1
26
2
c
4 2y
1 z
6 2z
BD has equation 2x 4
4
9
7
13
3
0
f r £ 13≥ l• 13 μ
18
26
3
13
28
, 0, ≤
3
3
7
£ 0 ≥
4
13 r
e i i j k
b x 2y 9
c ¢
7
l£ 1 ≥
5
ii PO i 2j 4k
37 4 9
, , ≤
5 5 5
iii
12
214
d (6. 63, 3.50, 4.65)
16 (6.87, 3.99, 4.15) or (4.53, –0.694, 4.15)
Chapter 14
1 5x
2 10x
Exercise 1
3 2x
4 2x2
Chapter 14
1 x2 x c
9
2 32
x c
3
˛
22 y
˛
1 4
x c
4
17 3x 2 c
˛
˛
28 y
˛
32 94
k c
9
˛
7 y 16x 46
˛
1 4
x 2 ln冟x冟 c
4
˛
1
12 2x2 c
13
˛
˛
5
˛
˛
˛
30 y t 1 3t 2 3t 3 c
˛
˛
25 y
˛
˛
˛
8 x 1 c
˛
20 y 8x
˛
˛
5 3
x 4x c
3
˛
15 x4 2x2 9x c
˛
2 32
1
x 2x2 c
3
19 y
7
14 2x2 2x 2 c
˛
1
5
24 y x 2 x 4 c
2
4
1 6 1 2
z z c
6
2
˛
˛
˛
˛
˛
29 y
6 2x4 2x2 3x c
2 7
x x5 c
7
1
18 y x 4 c
2
˛
1
3
4
818
8 y t7 t5 t3
7
5
3
105
˛
˛
9 23
x c
2
˛
21 y 4x4 12x2 c
˛
8 72
14 32
x
x c
7
3
˛
26 y
˛
31 y
˛
14 194
3
x 2x2 c
19
˛
˛
2 12
4
t t3 c
3
9
˛
˛
˛
˛
4 y x2 5x
9 Q
˛
2 72
p
21
˛
8 112
p
33
5 y x4 2x3 7x 3
˛
˛
6 y
509
4 3
x 6x 1
3
6
˛
˛
2
˛
Exercise 4
2 4ex cos x c
˛
6 5ex 2 cos x 3 ln冟x冟 c
˛
˛
˛
3 y 4x2 3x 18
˛
Chapter 14
1
˛
Exercise 3
2 y 2x2 3
1
2
10 4x 1
9 3x3
˛
5 2x3 5x c
˛
˛
Chapter 14
1 y 6x 4
8 x5
23 y 3x3 12x2 16x c
˛
27 y 6p 2 c
˛
1 5
x c
5
˛
2 3 21 2
x
x 27x c
3
2
˛
4
˛
11 7x 2x 2 c
1
˛
16 x x2 2x3
7 x4
˛
1 4
x c
4
3
˛
10 3x3 c
˛
6 x3
˛
Exercise 2
1 3
x c
3
2
˛
5 6x2
˛
7
3 5 ln冟x冟 sin x c
1 x 5
e ln冟x冟 7 cos x c
3
2
˛
8
4 6 cos x
6 5
x c
5
˛
ex
3
10x2 sin x c
15
5 8 cos x 7ex c
˛
˛
705
Answers
Chapter 14
Exercise 5
1
1
1
1
5
1 6x
1 cos 5x c 2
sin 6x c 3 cos 2x c 4 2 cos x c 5 2 sin 4x c 6 2 cos 3x c 7 sin 2x c 8
e c
5
6
2
2
2
6
1 5x
4 6t
5
1
1
9
e c 10 e4x c 11
e c 12 e6p c 13 4x2 e2x c 14 2e 2x c 15 y ln冟2x 3冟 c
5
3
6
2
2
1
1
1
1
16 y ln冟8x 7冟 c 17 y 2 ln冟2x 5冟 c 18 y
13x 1 2 6 c 19 y
14x 72 7 c 20 y 14x 32 2 c
8
18
28
8
˛
˛
˛
21 y
˛
1
13 2x2 5 c
10
Chapter 14
2 38
16 0.490
4 0
17 0.0429
5
2
3
17
4
3
18 9
64
3
2 61
4 70.4
4
3
1
6
10 1.60
17
256
3
3
˛
2
ln冟3x 2冟 c
3
7 201
8 216468
20 3.47
19 1.85
9 1490
10
2
3
11 0
12
1 3p
3
14 200
13 21
21 8.56
22 0, because both functions are odd 23 2 ln 冟 2k 1冟
8 0.619
9 22
15 312.6
6 6.39
7 5.55
2 3p 5
ln 2
2
3
8
21
1
(1 – e
2
22
2p
˛
)
10 1.69
11 0.825
1 3
p
3
23 k 4
9 23
10 408
˛
12 2.19
13 27
14 10.4
15 2
16 2.27
24 a 1
4
85
4
253
12
5
6
2401
16
863
6
7
8 22.1
11
21
4
12 2
13 6
14 15.3
Exercise 9
1
2
11 1.85
18 18
˛
Exercise 8
3 16
1
8
2
8
3
5 2
20 1.48
Chapter 14
1
˛
Exercise 7
Chapter 14
1
˛
18 0.549
3 50
19
32 2x3
6
Chapter 14
1 32
˛
Exercise 6
3 20
343
2
6
˛
3
4
23 y 12t 12 1 c 24 y ln冟3x 1冟 c 25 y 2 ln冟3x 5冟 c
2
3
3 4x
1
1
28
e c 29 cos 3x 2x2 c 30 e 8x 2 sin 2x c
2
3
2
27 y 3 ln冟6 t冟 c
1
1
ln冟2x 1冟
13x 42 6 c
2
18
1 3
˛
2
22 y 13x 22 2 c
3
26 y 8 ln冟4 p冟 c
31
˛
4
1
3
12 3.08
19
125
6
5
13
1025
3
Chapter 14
5
2
6
407
4
14 3.92
20 3.62
7 36
15
21 4.53
8 6.43
8
3
16
9
y
160
3
32
3
0
x
22 3.21
Review Exercise
4 3
1
1
3
1
1 a
x 7x c
b 3x3 2x2 5x c c 4x 2 c
d 13 2x2 3 c
2 a y x 4 c
b y p3 p8 c
3
6
x
2
8
1
3 2 1 12
3 2
2 c y t t c
3 y x 8x 2
4 a 4ex cosx c
b 7 sinx 4 ln冟x冟 c c
e6x 5 ln冟x冟 4 cosx c
8
2
2
3
5 a 3 sin2x c
7 a
10
382
25
407
4
b
b 2e2x c
1
1
p
2
4
11 a 0.753
c 3 sin2k
b 2.45
Chapter 15
1 cos¢u
3p
≤ c
4
1
3 12p4 12 2 14
16
1
13
3 16e2a 7 2 2 14
24
7
˛
˛
706
1
ln冟4x 3冟 c
2
c
8 a e5 e2
c 1.78
12 a
9
2
1
7 3x 1
e
13x 22 7 c
e 13x 42 4 c
21
3
3
3
2
b 36 c
9
ln12p 5 2
3
2
d
b 24.3
13 a 13.3
b 1.93
5
6
4x2
3
c
5
x
14 30.2
Exercise 1
1
p
sin¢3x ≤ c
3
4
2
3
1 32x 7
e
c
32
˛
4 2esin 2 2
˛
5
1
ln冟8x 9冟 c
4
6
1 6
1x 9 2 9 c
54
˛
1
1
1
1
3
3
1
11 x2 2 2 c 9
14x2 3 2 2 c 10
13 tan x 4 2 4 c 11 1x2 1 2 2 c 12
31 12 cos 0.5 12 5 4
3
12
12
10
3
1
1 2
3
14 1cos 2x 12 2 c 15
1x 2x 42 6 c 16 ln冟x2 3x 5冟 c 17
c
3
12
21cos x 82 2
8.
˛
˛
˛
˛
˛
Answers
18
1
ln冟2ex 4冟 c
2
23
15
128
1
ln冟3 sin x 12冟 c
3
19
˛
1
ln冟3x2 3x 4冟 c
3
24
Chapter 15
1
8
14
25
˛
x
1
tan 1 c
3
3
2
5
13x3 6x 19 2 2 c
15
20
1
c
913x2 3x 42 3
2
tan 1¢
1
ln冟2p2 2p 5冟
6
28
˛
˛
Exercise 2
2 sin 1
x
c
5
2x
3
27
≤
3 cos 1
15 4 sin 1¢
c
Chapter 15
1 sin x
27 ln冟e2x 1冟 c
26 1ln冟p冟 2 2
1
ln冟3 tan 2x 7冟 c
6
22
˛
x
c
6
4 3 tan 1
x
c
3
2x 3
≤ c
7
x
5 2 sin 1
222
23 1
1
x 1
sin x23 c 9 sin 1 1x 12 c 1 0 tan 1 a
b c
3
8
2
27
1
7
11 3 cos 2x2 2 c
21
21
˛
p23
p23
23
tan 1
3
3
18
6
18 sin 1¢
17 0.0623
p 3
23
1
1
2 cos 2x cos3 2x c
2
6
3 cos x
2
1
cos3 x cos5 x c
3
5
1
tan 2p p
2
4
sin 4x
x
c
2
8
5
x
sin 4x
1
4
6
4
1
c 7
112x 8 sin 2x sin 4x2 c 8 cos x cos3 x cos5 x cos7 x cos9 x c
2
8
32
3
5
7
9
1
1 3
1
1
1
1
1
14x sin 4x2
c
10
11
tan4 x tan6 x c 12 cos3 2x
cos5 2x c 13
sin p sin5 p
32
4
6
6
10
3
5
Chapter 15
6
c
5
12 7x2 4
2
28
3 21 2x c
1
ln冟x4 3冟 c
4
23
1
3
11 x2 2 8 c
12
29
1
ln冟x2 2x 3冟 c
2
Chapter 15
12
x 1
22
3
2
15
22
213x
7 tan 1 x2 c
8
˛
1
41p 22 2
˛
16
2627
3
1x 52 2
13
2
1
tan 1 12 tan x2 c
2
3
4 2 2 19x
˛
˛
1
x
1sin 2x 32 5 c 22 2e1 cot 2 c
10
1
1
124x 8 sin 4x sin 8x2
27 21ex 2 2 2 c 28
64
21
˛
˛
1
32 21 x2 4x 5 2 2 c
33
˛
17
c
1 x sin x cos x c
2
3
1x 22 2 13x 4 2 c
15
4
382
5
c
1
1sin2 x 3 2 5 c
5
1p 22 18p 12 7
12p 12 2 1p 12 2
3
4
c
9
1 6x
c
2412x 12 3
10
20
3
151x 52 75 ln冟x 5冟
3
(sin 1 x
2
p
1
1
1
p cos ¢sin 1 ≤ 2 sin 1 cos ¢sin 1 ≤
2
2
4
2
4
20
x2 )
4x21
1
25
˛
c
125
c
x 5
18
215p 22 2 115p 4 2
14
375
11
1 5x
c
101x 3 2 5
416 23
125
1
x
tan 1¢2 tan ≤ c
2
2
tan 1 1 25 tan x2 c
21 3tan
1
1
5 tan p
£
2
3
≥ –3tan
1
3
4
4
8
tan 1 2xn 1 c
3n
23
˛
Chapter 15
Exercise 6
2
e2x
12x 12 c
4
˛
6 x2 cos x 2x sin x 2 cos x c
˛
p
1
10 tan¢ 2x≤ c
2
3
1
ln冟x2 2x 3冟 c
2
16
˛
26 ln冟ex 2冟 c
x 2
≤ c
3
c
30
15 ln 冟x2 4冟 c
˛
31 2 sin 1¢
13 5x2 2
5
1
ln冟3 4 cos x冟 c
4
9
1 2
1x 6x 8 2 7 c
14
20
135
p
1
tan 2x
32
1
ln冟3x 1冟 c
3
3 21 sin 2x c
˛
c
x2 4x 8
c
x 2
19 2 sin 1
≤ c
1
ln冟6x2 4x 13冟 c
4
3
3
c
1
c
12x 12 1x 8 2
21p 22 2
1
ln cos 3x
3
Exercise 5
1
2
12
8 tan 1 2x c
1
c
21cot x 32 2
25
30 22 tan 1¢
˛
14
3
tan 1 2x c
4
19
1
24 cos4 x c
4
˛
2x
c
ln 2
13
˛
18 sin 1 3x c
˛
˛
1
tan2 3x
6
3
11 2x2 2
3
c
2
3
412x 1 2
4
3
p
sin¢4x ≤ c
4
2
7
1 4x 1
e
c
4
12
17
6
3
c
2
1
3
1
11 x2 2 211 x2 2
c
3
1 x
1x2 32 6
9
Exercise 4
2
11 cos13x a 2 c
3
1
23
≤
3
Exercise 3
1 3
sin x c
3
1x 22 5
1
3x 1
tan 1¢
≤ c
6
2
13
≤ sin 1¢
6
1
7 0.0203
1
x 3
x 2
tan 1¢
≤ c 12 5 cos 1¢
≤ c
3
3
3
11
1 1 x 1
sin ¢
≤ c
3
2 23
16
c
7
x5
15 ln x 12 c
25
˛
3
e2x
12x2 2x 1 2 c
4
˛
˛
8
4
x cos 2x
sin 2x
c
2
4
x3
13 ln 3x 1 2 c
9
˛
5
1p
12 10
110
9 x3 ln 8x
˛
1 10p
x3
c
3
˛
10
4608
55
12
e 3x
19x2 6x 2 2 c
27
˛
˛
707
Answers
11
ex
1cos x sin x2 c
2
16
e2x
12 sin 3x 3 cos 3x2 c
13
12 x sin 1 x 11 x2 2 2 c
˛
˛
1 2p
20
12
1 np
12 1n
n
1
21n
1
3
x
ln冟x2 4冟 2 tan 1 c
2
2
2
˛
˛
Chapter 15
11
x2 8
36
17
7 2ex
c
2
x
˛
5
c
˛
12 x
c
1
17
˛
8
24
e 2x
1sin 2x cos 2x2 c
4
28
eax
1a sin 2x 2 cos 2x2 c
a 4
21
˛
˛
38
1
tan3 x
3
41 ln2
1 3
sin 2x
6
3x2
2
˛
35
c
1
tan5 x
5
2x
1x 32
7
4
c
2
˛
11 5 x2
c
x
4
1 3
¢ x
4 2
2
3
13x 52 2 c
9
˛
2512 5x2 2
3
24 3.16
25
708
2 4.48
19x
p
1
tan¢2x ≤ c
2
3
1
c
42
40
x3
3
211
x2
2
˛
˛
x
1
x
2
1
sin
2 ln x
10 2 sin 1¢
c
1
80
325
15 tan
1
4
x
5
ex
≤
1 4x 5
e
c
4
30 1.44
4
˛
7
23
3
˛
˛
˛
12x3
192x12
32x2
c
7
23
3
10
˛
x
c
˛
1
ln冟2x 1冟 c
2
27 x tan 1
32
u
sin 2u
c
2
4
33
x
c
1
1
ln冟x2 1冟 c
x
2
˛
sin 6x
x
c
2
12
sin 4ax
≤
4a
1
¢x
4
37
x2
4
x
4
13 ln 2x
8
1
cosec 4x
4
c
6 0.0791
c
1
p
p
≤ cos¢x ≤ c
6
6
c
c
19 sin 1¢
31
x 2
233
20
˛
11 3a 2
3
1
3
11
43
˛
˛
1
c
27
32 x cos 1 2x
1 a b cos p
2
12 ln2
b
a b
1
12ex 1 2 2 c
4
˛
16 0.142
x
1ln x 1 2 c
ln 4
1x
12x2 70 2 c
25
26
31a 12
≤ c
5
1 1 2x
sin
c
2
5
1
112 8 sin 2x sin 4x2 c
32
15
17 16.5
21 sin 1 1x 12 c
22
x5
15 ln 2x x2 c
25
˛
1
1
tan5 x tan7 x c
5
7
28
1 1
sin 2x 221 4x2 c
2
21 4x2
c
2
34
pa4
16
˛
33 1
˛
˛
35 0.0280
36 1.50
38 0
Exercise 10
3 0.148
5 9.42
6 214
1
x2 2 2
˛
7 0.227a2
˛
10
4 e3
2
˛
11
c
˛
2 tan
˛
12
5p
101p
23 x sin¢x
x2 2 2
2 x1
1
14
5
˛
3
tan 1 x2 c
2
1
tan4 x c
4
2
x
tan3
3
2
36
c
c
26 x ln冟2x 1冟 x
31
x2
3x 10 ln冟x 3冟 c
2
4 2 tan 1 2x c
19
˛
1
x 2
tan 1¢
≤ c
2
2
8
82
e3x
13x 12 c
9
22
c
˛
Chapter 15
1 0.215
135
1
x
18 cot¢sin 1 ≤ c
4
2
3 2x
sin ≤
3
4
e 3x
1sin x 3 cos x 2 c
10
x
tan 1¢25 tan ≤ c
2
25
1
37 ln冟cos 2x冟 c
4
5
4
x
cos5
5
4
22 ≤
3
x 3
tan 1¢
≤ c
4
4
14
2
29
x
3
˛
3
422
413x
13
9 ln冟x2 1冟 3 tan 1 x c
8 0.169
˛
23 2.44
c
1
30 cos3 x c
3
8
x
cos3
3
4
6 sin
3x2
3x
3
cos 2x sin 2x cos 2x c
4
4
8
18
x
4 2 ln冟x2 4x 8冟
Exercise 9
e 2x
12x2 2x 12 c
4
13
˛
7 x 7 ln冟x 4冟 c
˛
x
x
x
8x sin 16 cos c
2
2
2
2214
214
tan 1¢
13x
7
14
32
4
4 cos
39
c
Chapter 15
1
˛
2
˛
c n =/ 1, ln cos x + c for n = 1 9 tan
25
5
1 3
sin x c
3
29
˛
25
≤ c
1
ln冟3x2 1冟 c
3
3
x
1
1ln冟x冟 1 2 c
x
25 2x2 cos
2
sin 2x
2
1
x
223
tan
tan 1£
2≥ c
3
23
22
x 2
tan 1
c
2
B 2
˛
1
12 cos n
1n
10 ln x
5
x 3
Exercise 8.
˛
16 x 11 x2 2 2 sin 1 x c
34
1
˛
1
3
3
18x2 81x 12 2 11 3x2 4 2 c
3
2
8x2
20 2x 2
˛
eax
1a sin bx b cos bx 2 c
a b2
19
˛
6 21 x2 6x 4 2 2 sin 1¢
Exercise 8
sin 3x
cos 2x
c
3
2
11
˛
1
5 23
x23
ln冟x2 3冟
tan 1
c
2
3
3
3
˛
22
x 2
tan 1¢
≤ c
2
22
5 ln冟x2 4x 6冟
sin x
xn 1
3 1n 1 2 ln x 1 4 c
1n 12 2
18
e3x
1sin x 3 cos x2 c
10
15
˛
Exercise 7
1 11 x2 2 2 sin 1 x c
6 221
˛
14 e2x 1x 1 2 c
˛
1
12
22
Chapter 15
1
ex
1sin 2x 2 cos 2x 2 c
5
17
1
ln冟1 x2冟 c
2
13 x tan 1 x
1
˛
212a
3
1 2 2 13a
15
12
12 5.66
13 11.7
14 3.03
Answers
Chapter 15
Review Exercise
3
1k2 4 2 2
3
1 e ek 1
4 x 2 2
¢
≤ (3x
15
2
2
˛
7 a 1.07
8
e 2x
12x2 2x 12 k
4
˛
b y 0
13 a (0,1) is a maximum
Chapter 16
1 y
x3
cos x k
3
120
15
6 y
y2
2x
2x2 ln x
˛
˛
239
240
16
y
˛
1
13
˛
x2 5
˛
12
1
5
1
2x tan
np
1n 1 2
9
c
8 y
˛
1
14x sin 4x2 k 9 y
8
4
13x
135
5
22 2
˛
1
1
ln冟4x2 3冟 ln 19
2
2
14
y=
p
¢ ≤
4
3x
5
˛
x
ln 1
k
3
1
ln 3
2
5
≤
c – 6ln x
1
x2 – 2x tan
˛
3 23
y
2
2x
e
2
1
ln 131
2
3
ln 3
8
4 sin
t
k
3
2
˛
˛
1
x
2
3x
4x 2 + 3
1
ln ¢
≤
2
19
e
2
15
t
k≤
12 ln y
1
ln 4
ln x
sin x
1
11
t2 2 2
k
k2
˛
2x
˛
cot y
ln cos x
1
31t sin
˛
ln ¢
4 y
k
8 s3
k
11 y
1
2e2
3
ln x2
2
2x
˛
k
˛
u3
3
17
1
ln 4
3
2y
7 ln y
sin 2at
2a
˛
14
1
˛
Chapter 16
e2t
12 sin t
5
˛
p3
24
cos t2
1
5
1
18 2 sin
3s
3( t2 – 1) + p
˛
Exercise 3
1 y ln冟cos x冟 k
2 x
2t3
kt c
6
3 x
˛
dy
dz
1
tan 1 z x k
dx
dx
6 a
1
1
7 y 11 15x2 2 2 k
3
13 y
e
10 v2
c
ln 4
3
ln 4x2
8
3
6p
9
iii
12 0.690
4 y x cos x sin x k
˛
˛
1
ln x
2
y
6 y = ln ¢
k
˛
5
1
ln 2y2
2
16
2 tan
110
13 ln y
4p
9
ii
2
3
3 y 11 x2 2 2 k
3
k
˛
dx
12 10 130x
13x
y
9
k
x2
˛
2p
9
a
11 ln13 b sin x2 k
b
Exercise 2
ln cos x
5 y4
1
x 3
arctan¢
≤ k
2
2
10
x 2
b c
5
13x4
kx2
x4
ln x
cx d
24
288
2
cx2
2
˛
2
1
10
b
15 b i
˛
kx3
6
Chapter 16
1
14 1
3 2kx3
3
e B1 R c
2k
2k
11 y
˛
x cos x – 4 sin x
12x 12 6
13x 7 2 5
2 y
˛
10 y ln冟cos x冟 kx c
15 y
ex
2
6 a 25, b 2, sin 1 a
5 0.307
˛
Exercise 1
5 y ln冟1 sin x冟 k
12 y
p
1
2
d
3 25
9 a y
˛
1
ln冟1 x2冟 k
2
4 x arctan x
˛
3
c
4)
sin nt
kt c
n2
y3
˛
4
3
˛
c y tan1x k 2 x
7 y
ln冟1 x3冟 9
˛
Bx4
Bx3
Bx
24A
12A
24A
˛
5 tan y tan x k
8 V 4 cos ¢t
˛
p
≤ 6
4
9 r 4t ln t 4t 24 20 ln 5
Chapter 16
1
v
4t3
3
˛
t4
3
;
2se2s
˛
D
11 a 2.60
t2
2
˛
s
sin 3t
,s
3
4 a v
7 v
t
Exercise 5
˛
cos 3t
9
e2s
2
11 b v
˛
9
220e
2 a v
3t4
2
10
2 b
11
18
p
seconds
3
5 s
8 v
2.60t
˛
˛
4 b
;
12s
C
c 108m
12 5
6134 ms
223
˛
t
2
12 b
1
2p
b
3t5
10
10t
2 d
14
6 v
B
˛
2 c s
2 ln l
3
9 a 7 ms
4
5
12 a v
t2
2
1
1
1
t
13 v
7
1
1
S 7 ms
2
2
g
g
k
kekt
˛
1
29900 m
2 cos ¢s
4
as t S ∞
, Yes v S
3 26.6m
p
≤
4
10 b
e8
137
˛
4
g
k
709
Answers
Chapter 16
1 a 176
1 b 107
2 d 0.622
9
49p
16
12 a
Exercise 6
1 c 57.4
2 e 113
1 d 8.90
2 f 0.965
1 e 104
2 g 12.8
3
1 f 2060
pa
5
1 g 327
1 h 1.23
1 i 1.08
2 a 8p
1 j 274
2 b 5.98
˛
4 145
5 1940
6 84.2
7 5cm, 196 cm2
8
y
y | x2 1 |
10 p2b2a 11 p3(n2 + (n – 1)2)
1
12 sin 1 x 2x21 x2 2 k
4
p
1p 2 sin 1 a 2a 21 a2 2
4
b.
˛
(0, 1)
˛
( 1, 0)
3.35 ,
Chapter 16
p
1 12
6
v
B
3ln ¢
s2
p 1e8a – 12
˛
3 4m
4
˛
˛
4a
4e
5x 2
1
≤
y = e2
˛
1
•
2T – 1
T
–
p
–
4
1
9 Correct
2
x
10 169.8 years
12 a Correct b 0, 3, 6 seconds c i distance =
t sin
0
p
(p + 2)
14
4
15 a
y
6a
b Vx = 72pa3
0
d 60i
2
d 16i
Chapter 17
3 a 4 19i
Vy
Vx
6
t sin
3
≤, s
3
3
2p
¢t –
pt
36
dt ii
metres
3
p
3
2p
2pt
sin
3
≤
13 a v = v0e–kt b t
32
45
a 12i
b 15i
5 a 9
b 1
c 24i
6 a 9i
d 52i 3 a 240i b 32 c 45i d 96i
3
5
7i
1
b
c i d 1 e 1 i
3
3
2
4
e 72i
f 35
g 90i
Exercise 2
b 18 28i
b 47 35i
c 7 i
d 14 21i
c 7 2i
e 7 11i
d 115 111i
e 306
2 a 3 5i
f a2 b2
˛
˛
b 13 + 22i
g 1 70i
c 20 10i
h 117 44i
d 7 13i
i x2 y2 2ixy
˛
˛
3 i
15 10i
7 26i
3 j m(m2 – 3n2) + in(3m2 – n2) k (m3 – 18m2 – 12m + 24) + i(3m3 + 6m2 – 36m – 8) 4 a
b
c
5
13
29
12x 5y2 i 15x 2y2
x 1y2 3x2 2ixy2
2x2 y2 3ixy
10 33i
3 4i
3
i
4 d
e 6 2i f
g
h
i
j
29
5
2
2
4x2 y2
x2 y2
x2 y2
˛
b 11 2i
6 d x 5, y 12
710
e
˛
˛
˛
5 a 4
1
ln 2
k
Exercise 1
1 a 18i b 38i c 112i
15
5
4 a
b 2 c
i
2
2
1 a 8 16i
c
pt
dt –
3
2pt
¢1 – cos
2p
x
4a
Chapter 17
3
11a v
3
b t = 3 seconds
p
2
5x 2
˛
1
8
ln ¢ ≤ ii 45.3 mins
7 a Correct b i A = 78, k =
15
13
2T
x
y
2
5 y = Ce
1
≤ + 4. At t = 5, v = 23 ln 13 + 4
2
(1, 0)
Review Exercise
x
–1
B2
2 y
8 cos–1 ¢
2 c 0.592
5
c 237 3116i
x 6, y 3
˛
˛
d 8432 5376i
f x
5
14
,y
17
17
6 a x 15, y 7
g x 21, y 20
˛
˛
b x 8, y 0
15
h x y ;
B 2
˛
˛
˛
˛
c x 0, y 3
i x
29
72
,y
25
25
Answers
x 3, y 1
6 j
7 d Re1z2
x
k
33
2591
,y
169
169
61
72
, Im1z2
65
65
e Re1z2
x
c 2.12 0.707i, 2.12 0.707i
1; i23
2
c x
8 d 3.85 1.69i, 3.85 1.69i
3 ; i 251
2
d x
3 ; i 26
3
d x3 3x2 7x 5 0
11 a x2 4x 53 0
b x2 8x 25 0
˛
˛
13 3, 1 i
18 z1
˛
14 a 3, 1 2i, 1 2i
19
Chapter 17
1 a
e x
3 ; i295
4
˛
2xy
˛
3 i23
2
˛
f x4 10x3 20x2 90x 261 0
˛
˛
˛
˛
214 735 i
15
53
3
9
20 p , q
5
5
9 a x 3 ; i
b x2 6x 10 0
˛
˛
d x2 2ax a2 b2 0
˛
b 2, 1 3i, 1 3i
f 0.734 0.454i, 0.734 0.454i
10 a x2 4x 13 0
˛
c x2 14x 85 0
˛
˛
41
117
, Im1z2
145
145
x2 y2
˛
i 0.541 0.0416i, 0.541 0.0416i
e x3 8x2 25x 26 0
˛
26 2i
21 i
, z2
17
17
f Re1z2 0, Im1z2
˛
e 1.92 1.30i, 1.92 1.30i
h 1.59 1.42i, 1.59 1.42i
10 c x2 8x 25 0
˛
˛
c Re1z2
2p
2p
, Im1z2 sin
i Re1z2 128, Im1z2 12823
3
3
xy
9x
8 a 1 4i, 1 4i b 1.10 0.455i, 1.10 0.455i
1 y2 16 + 9x 2
8 g 0.704 0.369i, 0.704 0.369i
9 b x
˛
53
89
, Im1z2
185
185
h Re1z2 cos
12
, Im1z2
16 + 9x 2
y2
1
b Re1z2
2a
12
ab
3a
, Im1z2
4 b2
16 a2
4 b2
16 a2
˛
7 g Re1z2 597, Im1z 2 122
7 j Re1z2
7 a Re1z2 27, Im1z2 8
12 x4 10x3 42x2 82x 65 0
˛
˛
˛
˛
348 115i
17
13
16 8 2i, 8 i
88 966i
25
21
Exercise 3
b
iy
c
iy
d
iy
iy
z2 z3 2 7i
z1 z3 3 i
z3
z1 z3
z1 z4 4 3i
z1 z4 6 i
z2 z3
x
z1
z3
x
z1
z4
z1 z4
z2
z1 z4
x
e
2 a 2¢cos
iy
z3 z4 1 4i
p
p
i sin ≤
3
3
z3 z4
x
z4
4 a 1 i23
b
4 h 1.67 4.03i
215
25
i
2
2
p
b 5e 2.21i
3 a 422ei 4
˛
c 522 5i 22
5 a r 2313, u 0.825
7 vii r = 25, u = –1.33
˛
d 3.74 1.00i
b r 2701, u 1.38
6 c Root 1 r 27, u 0.714 Root 2 r 27, u 0.714
ii r 325, u 1.46
c 253e1.85i
˛
6 a Root 1 r 2.65, u 2.17 Root 2 r 2.65, u 2.17
7 b i r 65, u 1.04
b 28 Bcos¢
2 d 2413cos1 0.8962 i sin1 0.8962 4
z3
x
z1
z4
e
3p
3p
≤ i sin¢ ≤R
4
4
e 101cos 0 i sin 02
d 282e 1.46i
22370, u
f 6¢cos
e 8e0i
˛
322
322
i
2
2
c r
c 2263cos12.942 i sin12.942 4
˛
p
p
i sin ≤
2
2
p
f 2ei 2
˛
f
25
215
i
2
2
0.487
d r 4
g
1523
15
i
2
2
2370
, u 1.41
5
b Root 1 r 25, u 1.11 Root 2 r 25, u 1.11
7 a i z1 13e 1.18i
˛
iii r 26, u 0.129
˛
ii z2 5e2.21i
˛
iv r 2.5, u 1.17
˛
iii z3 25e 0.284i
˛
˛
v r 5, u 2.50
p
iv z4 2ei 3
˛
˛
vi r = 6.5, u = –2.22
viii r 150, u 0.763
711
Answers
8 a
and
c Rotation of
b
iy
iy
27 3cos1 0.7142
9 a z1
˛
x
z2 2 3i
p
radians clockwise.
2
i sin1 0.7142 4 z2
x
z3
9 b 冟z1z2冟 214, arg1z1z2 2 3.07, 2
z4
˛
˛
˛
22Bcos ¢
˛
˛
3p
≤
4
i sin ¢
3p
≤R
4
z1
z1
7
2
, arg¢ ≤ 1.64
z2
B2
z2
˛
˛
˛
˛
z1 3 5i
10 z1
˛
23
7
1
4
i, z
i
53
53 2 13
13
iy
10 67i
˛
14 25i
1 i23 1 i23
,
2
2
11 b z 1 0i,
106z1 39z2
ii 10
14 a 13 cos10.8412 i sin10.8412 4, 13 cos1 0.8412 i sin1 0.8412 4
3
15 a r , u 1.23
2
106z1 39z2
12 b i 16
15 b
b 1.68 radians
c No.
x
3
1 2
4
Chapter 17
Exercise 4
1 a 10241cos 10u i sin 10u2
1 f
b cos 25u i sin 25u
1
1
Bcos¢ u≤ i sin¢ u≤R
3
3
24
1
3
c
1
3cos1 5u 2 i sin1 5u 2 4
243
p
p
h cos¢ ≤ i sin¢ ≤
2
2
g cos 0 i sin 0
c 61cos u i sin u 2 3
1
1
1
e cos u i sin u
2
2
d cos1 9u 2 i sin1 9u 2
i cos¢
3p
3p
≤ i sin¢ ≤
4
4
d 1cos u i sin u 2 4
1
j cos¢
e 1cos u i sin u 2 2
p
p
≤ i sin¢ ≤
10
10
f 1cos u i sin u2 8
1
2 a 1cos u i sin u2 7
b 41cos u i sin u 2 2
3 a cos 8u i sin 8u
5
5
b cos u i sin u c cos 3u i sin 3u d cos u i sin u e cos 11u i sin 11u f cos 3u i sin 3u
2
2
3
3
3
3
p
p
h cos p i sin p i cos p i sin p j cos
4 a 2 3i, 2 3i b 0.644 1.55i, 0.644 1.55i
i sin
4
4
4
4
12
12
1
1
3 g cos u – i sin u
6
6
4 c
1
26 Bcos¢
3p
3p
p
p
1
≤ i sin ¢ ≤R, 26 Bcos ¢ ≤ i sin ¢ ≤R,
4
4
12
12
4 e 1.456 + 0.347i,
0.347 + 1.456i, 0.347
4 f 0.132 1.67i, 1.62 0.389i
1
4 g 26 Bcos¢
p
p
≤ i sin¢ ≤R,
36
36
5 a
1
26 Bcos¢
1
g 26 Bcos¢
1
712
2
3
2 1
3
x
0.347i
7p
7p
≤ i sin ¢ ≤R
12
12
d
1.69 0.606i, 0.322 1.77i, 1.37 1.16i
f 1.54 0.640i, 1.09 1.27i, 0.872 1.42i,
35p
23p
35p
23p
1
≤ i sin¢
≤R, 26 Bcos¢
≤ i sin¢
≤R,
36
36
36
36
1
26 Bcos¢
11p
11p
≤ i sin¢
≤R,
36
36
13p
13p
25p
25p
1
≤ i sin¢
≤R, 26 Bcos¢
≤ i sin¢
≤R
36
36
36
36
c
1
2
3
1.456
b
iy
1
1.456i,
1
26 Bcos ¢
3
3
1
3
1
3
3
3
1
d
1
1
1
4 4
4
4
1
1
4 4
1
1
4 4
1
1
1
2
2 9 2
1
9
9
2
1 2
9 1
9
2
2
9
1 9 2 2 1
9
9
1
1
Answers
p
p
6 a 16Bcos¢ ≤ i sin¢ ≤R
2
2
7 b Real part is –215 Imaginary part is 215 23
11 a z2 53 cos1 0.9272 i sin1 0.9272 4
2p
2p
i sin ≤
7
7
˛
z41 16Bcos¢
˛
15 c
9 b tan¢
4
25
b
˛
15 a z1 2¢cos
b z21 4¢cos
˛
15p
7p
p
9p
≤, tan¢ ≤, tan¢ ≤, tan¢ ≤
16
16
16
16
4p
4p
i sin ≤,
7
7
z31 8¢cos
˛
15 d Rotate
8 Real part
˛
–2.06
˛
˛
x y
2
2
˛
˛
2 k 2
˛
˛
3 a 2, b 5
, Imaginary part
˛
15
6
1
4 6
z
z2
z
˛
5 b 416
9 23
˛
x2 y2
ii 223
2 A B
2
4 3
2
3
4 4
x2y y3 y
˛
iy
C
2p
2p
≤ i sin¢ ≤R,
7
7
z71 1281cos 0 i sin 02
˛
c cos¢
d a
˛
2p
2p
≤ i sin¢ ≤
3
3
1
3
15
5
,b
,c
,d
32
16
32
16
Review Exercise
x3 xy2 x
10 c i
˛
p
p
p
p
16 b cos¢ ≤ i sin¢ ≤, cos¢ ≤ i sin¢ ≤
3
3
3
3
17 c z6 6z4 15z2 20
Chapter 17
214.8, u
z61 64Bcos¢
2p
anticlockwise. Enlargement scale factor 2.
7
˛
1 r
6p
6p
i sin ≤
7
7
˛
128
1
23
10 i
2
2
12 Product 4, Sum 2
6p
4p
6p
4p
≤ i sin¢ ≤R, z51 32Bcos¢ ≤ i sin¢ ≤R
7
7
7
7
2
2
7
7
4
2
2 8
2
7
7
16
2
2
7
7 2
7
32
64
p
p
7 a 2Bcos¢ ≤ i sin¢ ≤R
3
3
b 1.85 0.765i, 0.765 1.85i, 0.765 1.85i, 1.85 0.765i
6 x
47
1
,y
65
65
p
3
10 a 冟z冟 2, arg1z2
˛
iii 223
3
2
11 c cos 0 i sin 0, cos
11 b 1,
7 x3 5x2 10x 12 0
˛
˛
b 冟z2冟 4, arg1z2 2
˛
˛
1 i23 1 i 23
,
2
2
2p
2p
2p
2p
i sin
, cos¢ ≤ i sin¢ ≤
3
3
3
3
1
2
3
x
2
3 1
2
3
1
11 d Each side has length 23. Area of triangle
13 d i a 32, b 32, c 6
16 a i 1
19 a 1,
ii
2p
3
c
3
3 23
i
2
2
1 i23 1 i 23
,
2
2
21 c 1 23, 2232, 1 23, 2232
ii 6
5
16
12 a a , b
3
9
14 z 5 i, 6 i
17 z
3
c £0
0
323
4
5,
0
3
0
p
3
0
0≥
3
arg1z2
2p
3
p, 2
b a
17
31i
17
31i
,b
4
4
4
4
15 a i cos3 u 3 cos u sin2 u i 13 cos2 u sin u sin3 u2
˛
Re1z2
d x 1, y z 2
5
2
10k i 1k2 21 2
˛
18 a
˛
k2 49
21 a 2 i, 2 i
c
23 22
20
b k ;221
˛
b
iy
B
2 i
0
x
2 i
A
713
Answers
Chapter 18
Exercise 3
Answers are given when asked to form a conjecture
2n 1
≤
2n
n
2
a 3r
r
a 4r 7 n 12n 52
3
72
˛
1
Chapter 18
n
1
n 13n
2
2
˛
Chapter 19
6 n2 2n 2
7 n2 4
˛
˛
Exercise 1
n
≤
1 n 1 a Continuous
mode 4., median 4, mean 4.15 3 mode Blue
n 1
n
16 Mn ¢
5 16.7
6 a 1.58m.
25000 32000 40000 45000
x 18
x 26
x 34
x 42
x 50
x 58
x 66
x 74
x 82
10
18
26
34
42
50
58
66
74
Age
Weight
5
65000
Heights of boys
6 a
Weights of eggs
44 49.5
8
57.5
69
74
Heights of girls
Grade 7
160
168
176
192
133
145
151 157
133
145 148 151
169
Grade 8
714
16
14
12
10
8
6
4
2
30.5 x
31.5
Frequency
Frequency
20
Swedish
British
American
Norwerian
Danish
Chinese
Polon
Others
Frequency
30
10
Salaries of teachers
144
7 0.927
Weight of bags of nuts
3
40
Nationality of student
7
2
b Mean 1.79m
Age of members of a golf club
2
100
90
80
70
60
50
40
30
20
10
4
d Continuous
Exercise 2
Nationality of students
1
c Continuous
b There is no information about the ages or gender of the students.
8 a People below this height are not allowed on the ride.
Chapter 19
b Discrete
29.5 x
30.5
c 78.2
˛
28.5 x
29.5
4 b 81-90
18p
Review Exercise
5 sum of the first n odd numbers n2
8 1n 12! 1
4 Any value
˛
r 1
27.5 x
28.5
˛
26.5 x
27.5
1
1 Dn ¢
0
163
b 21.0
Spanish test marks
8
16
21
27
30
Answers
9 median = 13,
10 estimate median = 25
Age of children
at a drama workshop
Age of mothers giving birth
160
140
50
Cumulative frequency
Cumulative frequency
60
40
30
20
10
120
100
80
60
40
11 12 13 14 15 16 17
Age
20
18 22 26 30 34 38 42
Age
11 estimate Q1 12, Q2 21, Q3 24
˛
˛
˛
12 estimate Q1 20, Q2 20.5, Q3 21.25, 10th percentile 19
˛
˛
˛
13 estimate Q1 35m, Q2 42m, Q3 48m, 35th percentile 38m, 95th percentile 54m
˛
˛
˛
Chapter 19
Exercise 3
1 a Q2 10, IQ 8
b Q2 59.5, IQ 6.5
˛
c Q2 67, IQ 39
˛
˛
d Q2 176, IQ 89
˛
e Q2 40, IQ 3
˛
2 The two sets have a similar spread as IQ 3 for both sets. The average age for set B is less as the median is 18 and the median for set A is 19.
3 Box and whisker plots. Medicine IQ 1, median 2. Law IQ 2, median 3. Law students rated the lecturing higher but there was a greater
spread of opinion among this group.
Rating
Medicine
1
2
3
5
Law
1
2
4 a 2.28
3
4
b 3.74
5
c 33.4
d 5.50
e 9.17
5 Mean = 19.01, standard deviation = 6.28, estimated standard deviation = 6.31
6 x 501, variance 2.61
7 a Q2 = 105, IQ = 16
b x 110, s 16.2
Chapter 19
Exercise 4
1 a i Q1 8.3, Q2 9.9, Q3 11.9
˛
˛
˛
ii x 9.8, s 1.79
1 c i Q1 34000, Q2 45500, Q3 57250
˛
2 Graph IQ 3
˛
˛
b i Q1 183, Q2 263, Q3 298
˛
ii x 44500, s 14300
˛
˛
ii x 238, s 60.2
d i Q1 0.62, Q2 0.755, Q3 0.845
˛
˛
˛
ii x 0.724, s 0.189
3 Daniel Graph, median 185.5, range 167 Paul Graph, median 198.5, range 71
4 x 40.2, s 29.1, New mean 46.2, s 33.5
5 x 16.6, s 1.44
715
Answers
Chapter 19
1 a Continuous
Review Exercise
b Discrete c Discrete
Height of students
5
d Continuous
2 Red
3 x 76.0, s 16.4
4 1.49
6 a
b 17.5
c 40.9
100
12
33.5 39.5
51
60
Frequency
80
60
9 x
1.70 x
1.80
1.60 x
1.70
1.50 x
1.60
1.40 x
1.50
1.30 x
1.40
1.20 x
1.30
20
£264, s
Chapter 20
1
4
1
2
b
c
b 0.183
13 a 156
b x 44 minutes
13
15
11 a 0.1
d
13
15
b 1
£264, s
x
£46.70
b IQ 11
12 a 31.3
£41.70. After bonus, x
£296, s
b 9.84
£46.70
Exercise 1
1
2
2a
1
10
b
1
2
c
3
10
d
2
5
1
4
3a
b
13
20
e
c 0.5
2
3
1
4
9 a
12
1
10
5
8
b
13
1
4
c
1
8
d 1
14 0.72
3
4
e
1
3
15 a
c
9
10
d
13
20
e 0
4 a 0.48
5 No. P 1A´B2 1
4 b Because the probability of either a novel or a mathematics book is 1.
8 c
£296, s
11 a median 135
10 a 29.9
b x 1.63, s 1.51
˛
£41.70. After bonus, x
Height
1a
8 a Q2 1, IQ 1
7 estimate Q1 = 18, Q2 = 24, Q3 = 28
40
6 a
˛
f
1
2
g 0
b
13
18
c
10 a
1
9
5
7
d
18
9
e
15 f Because it is not possible to have one die showing a 5 and for the sum to be less than 4.
5
6
b
c
7
11
b
922
1155
7
1
2
1
6
d
1
6
1
9
f
e
1
4
8 a
1
5
g
2
3
b
9
15
7
18
16
23
32
9
1
b
c 1
16
2
18 a Events X and Y are not mutually exclusive because 2 fish of type A and 2 fish of type B fit both.
17 a
18 b Events X and Z are not mutually exclusive because 2 fish of type A, 1 fish of type B and 1 fish of type C fit both.
exclusive because the event Y does not allow a fish of type C and event Z does.
1
83
19 0.15 20 a
b
500
25
Chapter 20
Exercise 2
1 a
5
42
b
3
7
2 a
4 a
1
14
b
1
6
c
9
15
1
6
2
2
5 a
7
5
7 b No, because P 1A´B2 1
˛
b
c
b
8
1
2
14
17
1
2
3 a
c
9 a
1
2
7
16
b
6 0.0768
1
4
c
7 a
b
2
3
2
7
d
1
2
181
208
c
1
2
D
C
CD
B
A
A
716
AB
B
BC
BD
AC
C
AD
D
c Events Y and Z are mutually
Answers
Chapter 20
1 a 0.3
b 0.5
Exercise 3
1
6
2 a
1
6
5
6
3
1
6
5
6
3
b 0.12
0.6 W
0.2
R
0.7
0.8
c 0.32
R
W
d 0.3
H
(R W) 0.24
1
2
1
2
e 0.176
2
3 H
1
2
1
2
2
3
H
1
2
T
H
T
(T T) 1
4
5 d
5
12
e
2
3
H
1
3
T
1 a 0.974
b 6
3
4
1
2
6 a
6 c
56
121
7 a
8 a
108
455
b
1
(T T T) 12
13 a 0.2
T
1
5
c
b 0.44
9
5
29
11
41
55
c
2
3
1
6
b
15 a
c 0.25
d 0.12
b 0.34
2
15
12 a
14 0.521
(C C) 49
121
C
d 0
a
49
121
28
(V C) 121
(C V) 28
121
V
7
11
c 0.652
2
5
(V V) 16
121
C
3
11
b
128
455
2
5
b
1
22
b
4
11 V
7
11
C
V
7
11
10 a
3
4
7
8
d
4
11
16 a 0.03
Chapter 20
1
4
c
4
11
1
(T H T) 12
(T T H) 2
12
f
(H T) 1
4
(T H) 1
4
1
2
1
(H T T) 12
(T H H) 2
12
1
3
H
T
1
2
3
8
b
T
1
T
3 2
3 H
1
2
1
8
4 a
1
2
e
1
4 ( 4 4) 4
1
2
1
(H H T) 12
(H T H) 2
12
T
H
4
(H H) 1
4
T
(H H H) 2
12
1
3
H
4
b
1
2 H
1
2
T
5 c
1
2
1
2
1
2
5 a
(R W) 0.08
(R W) 0.56
1
2
4 (
4
4) 1
4
1
2
4 (
4 4) 1
4
4 ( 4
4) 1
4
d
1
2
1
2
0.3
25
36
(R W) 0.12
0.4
W
W
c
(3 3) 25
36
3
3 a
1
36
5
(3 3) 36
(3 3) 5
36
3
5
6
3
b
(3 3) 1
36
3
e
b
b
21
55
7
15
f
8
15
2
9
c
3
4
1
2
17 a 0.815
b 0.149
Exercise 4
c 6
9 0.84
10 a 0.222
1
13 a
16
1
b
64
2 a 0.832
b 0.074
c 19
b 24
c 0.144
14 a 0.0191
3 0.985
d 6
4
3
4
5
11 a 0.00877
b i 0.00459
ii 0.0255
2
3
6
45
53
b 0.322
7
32
45
c 0.632
1
15 a
27000
8 a i
d 0.561
b 90
c
11
609
ii 0.0212
12 a 0.3
iii 0.0153
b 0.35
b 0.0839
c 0.075
d 0.3
1
900
717
Answers
Chapter 20
1 720
Exercise 5
2 16065
b 5040
3 24
11 c 2520
16 a 9000000
21 a 60
4 60
12 a 40320
b 30
9 c
1
30
b 5040
22 a 28
b 28
c 35
7 241920
c 20160, 2520
13 a 2494800
17 a 831600
23 a 120
8 2177280
b 176400
b 90
9 a 36
b 635040
c 151200
24 756756
25 70
b 6
c 12
14 a 5040
18 119
26 210
d 24
10 70
11 a 90720
b 4320
c 720
15 a 36
19 38760
20 a 4
27 3185325
b 48
c 24
b 10
d 256
28 27
Exercise 6
1
1
1
1
2
7
2
2
c
d
2 a 362880 b i
ii
c
3 a 15 b
4 a 360 b
2
5
5
9
9
189
3
3
5
12
1
1
3
3
1
c
6 a 10440 b
c
7 a 16 b i
ii
iii
8 a 3150 b
39
29
15
2
8
16
30
1 a 100
3
20
6 604800
16 b Increases by 16000000
Chapter 20
5 b
5 4838400
b
10 a 3628800
1
30
b
Chapter 20
7
15
c
8
15
1
c
45
c
5 a 3838380
d
1
6
9 a 720
b
1
15
3
28
d
Review Exercise
1
1
1
b Events are not independent since P 1Black 2 P 1Brown2 and P 1Black ¨ Brown2
6
3
6
Events are not mutually exclusive because P 1Black ¨ Brown2 0 Events are exhaustive since P 1Black ´ Brown2 1
1 a
˛
˛
˛
˛
2 a 0.984
b 7
7 b 90720
3 a 151200
c 362880
13 b 216
14 0.048
5
16 b ii
6
7
iii
25
3n 1
2
18 a
21 a 0.581
b
8
b 10080
19
30
n 1
3n 1
b 0.0918
8
15
1
c
56
9 a 15
15 a 20160
28
iv
51
˛
1
4 a
6
b
1
4
b
17 a 252
20 a 0.549
b 0.0670
4
15
c
16 a
b 196
1
5 2n 2
¢ ≤
c
6
6
10 0.888
11 a 252
1
2
c 0.439
3 a
X
c 0.0663
X
0
P 1X x2
0
1
1
55
2 3
4 9
55 55
X
12
9
42
13
10
42
14
11
42
˛
P 1X x2
˛
5 c k
1
225
Y
P 1Y
˛
718
e 2
b
4
3
36
˛
2
3
8
d 0.8
3
2
36
P 1X x2
4 d
c 0.65
2
1
36
3 d X
4 a
b 0.6
1
3
8
˛
d 32
Y
1
3
Y
13 a 360
1
2
b i
Y
1
2
2
3
4
5
12
Y
A
3
10
Y
1
2
2
3
Y
1
3
Y
Y
B
6
10
1
10
N
N
Exercise 1
0
1
8
P 1X x2
c 126
B
2
7
1 a b 0.2
7 a 453600
A
3
7
2
7
Chapter 21
6 62
b 250
17 9
,
42 17
c 186
b 0.368
10
5
13
3
1
8
2 a a 0.33
b 0.87
c 0.75
d 0.73
c
X
0
1
2
3
27 108 144 64
P 1X x2
343 343 343 343
15
12
42
6
5
36
7
6
36
4
16
55
5
25
55
8
5
36
5 a k
1
2
3
4
1
8
3
64
y2
225 225 225 225
9
4
36
b
10
3
36
X
P 1X x2
˛
1
9
X
P 1X x2
˛
5
5
9
11
2
36
0
1
2 3
125 75 15 1
P 1X x2
216 216 216 216
˛
e
12
1
36
X
0
1
2
3
P 1X x2 0.512 0.384 0.096 0.008
˛
1
1
21
2
2
21
3
3
21
3
2
9
4
3
9
5
4
9
d k 35
f 7
X
˛
5
4
36
e 0.25
B
P 1B b2
˛
4
4
21
5
5
21
6
6
21
1
b k
74 X
c
X
P 1X x2
˛
P 1X x2
˛
1
5
35
2
6
35
3
7
35
4
8
35
5
9
35
4
15
74
7
6
30
5
24
74
8
7
30
6
35
74
9
8
30
10
9
30
(A Y) 3
20
(A Y) 3
20
(B Y) 2
5
(B Y) 1
5
Answers
6 a X
P 1X x2
˛
249
252
b
0
1
2
3
6 108 270 120
504 504 504 504
7 aX
0
27
64
P 1X x 2
˛
1
27
64
2
9
64
5
32
b
3
1
64
125
0
1
2
3
4 b 126
1
20 60 40
5
P 1Y y2
126 126 126 126 126
8 a Y
˛
Chapter 21
1 a b 0.3
2 E 1X2
˛
5
1
2
E 1X2 4.7
1
P 1X x 2
˛
441
91
4 a E 1X 2
˛
9 E 1X2 1
10 a 2.05
˛
c 6
d 0.986
b 5.45
13 a 7
Y
0.782
˛
7
18 a can be a probability density function Mean
19 a 0, 1, 2, 4
b
X
0
15
24
P 1X x2
˛
20 a 10, 11, 12, 13, 14
b
1
4
24
X
˛
4
, Var 1X2
7
b E 1X2
˛
c
d 8.15
35
6
110
35
4
1
39
2
1
10
4
1
10
b 14
15
7
b
1
2
17 a
c Mean
4
1
24
0
12
30
90
13
24
90
c
b
6
4
10
c 7
d 8
24
49
15 a
26
7
1
14
b 2.53
c 1.65
c 1.44
2
3
Variance 1.06
c E 1X 2 12, Var 1X 2
14
6
90
˛
˛
16
15
d
83
225
8
, Var 1Y2
7
e E 1Y2
0
1
2
3
4
5
6
81 54 27 24
7
2
1
x2
196 196 196 196 196 196 196
X
˛
Chapter 21
˛
Standard deviation 1.05
3
11
24
90
9
7
P 1X
1 a 0.27
0
4
10
11 a 3
14 a
c 0, 1, 2, 3, 4, 5, 6 d
0.816
˛
2
4
24
10
6
90
P 1X x2
329
6
b
E 1X 2 2.6
b x 3
P 1Y y 2
c 3.10
d b 0.1
˛
Y
0
1
2
3
2
56 84
8
39 195 195 39
˛
1
14
x 3
4
E 1X 2 3.06
˛
P 1Y y2
21 a
c b 0.28
˛
1 1
X
3
P 1X x2 0.15 0.25 0.6
6
28
, Var 1 Y 2
15
˛
˛
0.7
b 5.8
16 E 1Y 2
b E 1X2
1
0.3
25
9
691
400
12
91
E 1X 2 3.35
˛
˛
8 E 1X2
b b 0.15
˛
3 a c
X
12 a
Exercise 2
˛
˛
1.63
Exercise 3
b 0.532
b 0.833 c 0.834 3 a 0.208 b 0.0273 c 0.973 d 0.367 4 0.751 5 a 2.4 b 1.44 c 2
3
1
6 a 2.4 b 1.68 c 2 7 a n 7, p , q
b 0.445 c 1 or 2 8 a 0.00345 b 0.982 c 0.939 9 a 0.0872 b 0.684
4
4
5
9 c 0.684 d 0.847 10 a 3.52 10
b 0.0284 c 0.683 d 0.163 11 a 0.238 b 0.0158 12 a 0.245 b 0.861 c 0.997
4
1
13 a 0.060 b 0.00257 c 0.00191 d 0.230 e 0.129 14 a 10 b 2.74 c 0.416 15 a
b 17 16 a 0.0258 b 0 c
d 4
7
3
16 e 0.00258
8
18 c
3
c 0.0556
17 a Mean 2.1 Variance 1.81
f 0.00858
d 0.961
2 a 0.201
19 a 8
b 0.822
Chapter 21
c 8
b 0.423
c 0.353
d 3
4 a 1.68
b 0.0618
c 0.910
5 a 2.48
7 a 2.10
b 0.0991
c 0.0204
11 a 0.874
c 0.204
d 0.148
e 0.473
1
18 a X ~ Bin ¢8, ≤
3
a 0.125
b 0.332
c 0.933
b 0.156
d 0 0.0108
Exercise 4
1 a 0.224
14 a 0.0183
b 2
b 0.191 c 0.223
b 0.215
c 0.927
2 a 0.134
d 0.350
d 0.0426
b 0.151
b 0.213
8 a 7.62
c 0.554
c 0.763
12 a 0.0804
16 a i 0.839
ii 21.4, 21.4 iii 21 b 0.000241
18 a 0.0823
b 0.0499
c 0.00363
9 a 1
b 0.751
17 a 0.195
d 0.0000314
d 0.0404
b 0.996
d Mean 80 Variance 80
d 6
c 2
e 0.849
b 0.785
3
6 a 2.69
b 0.0799
b 0.981
10 a 0.905
d 0.182
e 0.454
f 0.0262
c 0.152
c 0.136
d 0.505
b 0.00468
13 a 0.0149
15 a 0.0324
d 0.166
d 10
e 0.944
c 0.000151
b 0.223
b 0.992
c 0.112
d 0.868
e 0.654
e 8
719
Answers
Chapter 21
1
10
1 a
b 3
Review Exercise
2 a l 2.99
c 1
6 a 0.176
b 0.905
10 a 0.0729
b 22
c 7
d 6.5
11 a
1
9
i
b 0.424
e 0.0158
ii
1
81
b i
3 a 0.225
b 3 or 4
7 a
12
25
b
73
648
ii
575
1296
48
25
c 17.5
8 a 0.175
c ii
˛
b 0.0226
P 1A¨B2
15 a P 1A B 2
P 1B2
˛
c 1
d 10
e 0.0232
13 30
b P 1A1 ´A2 2 P 1A1 2 P 1A2 2
˛
˛
˛
˛
˛
˛
˛
14 a 0.222
b 0.141
b 12.4
c 42.2
9 a 0.160
5 a 0.191
b 4
c 0.271
b 0.246
d 0.0808
iii
6
1
2
3
4
5
15
65
175
369 671
1
x2
1296 1296 1296 1296 1296 1296
X
P 1X
12 a 0.0105
4 a 20
b 0.939
c 0.104
d 0.00370
e 0.332
f 0.0145
6797
1296
g 0.995
c P 1E1 ¨E2 2 P 1E1 2 P 1E2 2
˛
˛
˛
˛
˛
˛
˛
˛
˛
15 d This is a distribution that deals with events that either occur or do not occur, i.e. there are two complementary outcomes. We are usually told the
number of times an event occurs and we are given the probability of the event happening or not happening.
Cj u j 11 u2 4 j
4
15 e i
Ckuk 11 u 2 4 k
ii E 1X2 4u, Var 1X2 4u11 u 2
4
˛
15 e vi 0.545, 0.0488
˛
˛
vii 0.969
Chapter 22
1 a k 1
1
2
3
4
5
6
Amount
received
in Euros
X
30
25
15
12
18
25
40
0.219
0.329
0.263
0.0878
x2
0.00137 0.0165 0.0823
˛
18
b i 0.0977 ii 0.885
Exercise 1
c
3
4
1
4
1
2
d
27
32
2 a c=4
y 1 x
4
1
3
y
c
2
d 0.634 4 a k 1.08
3
16
d 0
y x 1
2
x
c 0.707
冑2
b
1
y
b
6u 11 u2 2 4u4 11 u2 u4
2
0
1
123
d 305 17 a , E 1X 2
7
49
b y
3 a k 22
v
No heads
˛
c 59.5
iv 0.688, 0.996
16 a
P 1X
16 b Gain of 20.3 Euros
˛
iii 6u2 11 u 2 2 4u4 11 u 2 u4
b
x
4
y
c 0.306
(1.15, 1.54)
y 冑2 cos x
y 1 x(4 x2)
2
1
4
5 a
3
269
b
x
c 0.494
y
0.279
y 3 t2
269
y 6 (2 t)
1345
0.0758
0.0312
5
720
1.08
15 t
d 0.375
2
x
d 0.621
Answers
Chapter 22
Exercise 2
1 a k
1
2
b
5 a k
1
9
b 2.25
8 a k 1.56
10 c 0.273
4
3
2
9
c
27
80
c
1
ln 3
2 a
2
ln 3
b
c
1
(e – 1)
6 a c
d 2.38
4
4
ln 3
1ln 32 2
3 a c 0.755
1
(e – 1)
b
7 a k 1
9 a 0
b 0.616
c 0.422
d 0.546
e 0.616
12 a i 7.71
ii 0.947
b 0.318
13 a k
1
2
x
4 a k
b 0.530
b 0.571
c 0.141
b 0 6 x 6 0.421
1
16
b
p
6
e 0.169
d
c 0.115
23
6
c 1.97
d 0.0209
d 4
10 a 1
e
15
32
b 0
y
e2
2
31e 1 2
˛
b 0.148
c 0.00560
14 a
˛
14 b 2135
3
15 a c 0, k
8
c 12.4
b 0.15
c 1.587
d 0.305
0.05
y
1 (x 60)2
72000
x
60
Chapter 22
1 a 0.775
Exercise 3
b 0.589
2 c 0.396
c 0.633
d 0.678
d 0.0392
e 0.9234
f 0.485
e 1.69
f 0.0973
g 0.999
g 0.203
h 1.56
h 0.562
i 0.509
i 0.841
j 0.813
j 0.5392
3 a 0.00332
2 a 0.121
b 0.901
b 1.53
c 0.00332
d 0.968
4 a 0.0912 b 0.997
6 c 0.683 d 0.0279
c 0.952 d 0.122 e 0 5 a 0.106 b 0.809 c 0.998 d 0.101 e 0 6 a 0.275 b 0.00139
7 a 0.840 b 0.0678 c 0.683 d 0.997 8 a 40.6 b 38.9 c 41.9 d 39.2 9 a 93.9 b 84.6
9 d 82.2
b 13.7
15 0.939
10 a 5.89
11 Upper quartile Z 0.674 Lower quartile Z 0.674
d 4.18
12 0.935
c 86.6
13 0.912
14 0.999
16 0.134
Chapter 22
1 15.1
2 75.6
Exercise 4
3 30.5
11 m 290, s 11.1
4 39.0
b 2.29 kg
4 e 0.606
f 0.292
7 14.1
8 11.2
b 0.432
13 11.7
5 a 440
b 82.3 kg
9 m 11.6, s 4.53
b 0.227
1
1
≤, ¢m s,
≤
s22ep
s22ep
b 564g c 114 12 a 19.0 b 117
11 a 0.235
16 a m 28.5, s 21.49
21 0.00123
22 m 59.3, s 18.6
Chapter 22
3 a 0.309
6 ¢m s,
b 0.423
15 a 194 X 303
b 0.161
b m 589g, n 600g
2 a 10.6%
10 m = 64.56, s = 11.36
10 m 46.3, s 4.26
b 0.587
23 a 4.82
17 a 126
c 0.440
4 a 0.106
7 0.886
8 a 5
b 0.734
b 57.4
c 98.2
13 a 90.9%
b 280g
18 a 1.43
c 0.599
9 a 7.93
d 0.159
b 48.9
b 94.7
14 0.338
b 0.0146
19 4.14
b 0.0173
Review Exercise
1 a m 34.5, s 3.93
3 c 0.000109
6 7.81
Exercise 5
1 a 0.453
20 a 32.8
5 6.81
12 a m 23.6, s 6.13
Chapter 22
9 c 7
c 18.1
b 0.996
d 0.999851
4 2
2 a 0.0668
1
2
5 a 99.9%
b 11.4
d 0.350
e 0.348
7 c 0.268
0.637
9 a 1.63
冑3
1
冑3
10 d ii
b 142 cm
c 0.434
36
125
iii
c q 140 cm, r 180 cm
c 3.96%
8 a
1
4
d 0.00110
6 a 0.0327
˛
6 0.43
e 0.332
b 8.00
b E 1X2 p, Var 1X2 2.93
˛
d $6610 10 a m 28.6, s 14.3
98
10 e
125
d 0.121
b 12.6%
3 a 0.946
b 0.798
c Day 1: 2620. Day 2: 2610.
7 b 0
c 0.323
c x 0 Model is not perfect.
d i
8
125
f Either the events are not independent or the distribution is not continuous
2
11 a i E 1X2
˛
冮
1
x 18x x3 2 dx
12
˛
˛
ii 1.24
b ii 1.29
c 1.63
12 a i 1.355
ii 110.37
b A 108.63, B 112.11
13 a
4
81
b 0.6
0
13 c 0.24
d 9000 cents.
14 0.783
1
1
15 b e4 e2
˛
˛
1
e
4
c E 1X 2
˛
e
e
e2
1, Var 1X 2 1
2
3
4
˛
˛
d 0.290
e 0.0243
f 0.179
721