Ondes MHD .pdf



Nom original: Ondes-MHD.pdf

Ce document au format PDF 1.4 a été généré par Writer / OpenOffice 4.1.1, et a été envoyé sur fichier-pdf.fr le 01/01/2016 à 12:50, depuis l'adresse IP 89.156.x.x. La présente page de téléchargement du fichier a été vue 516 fois.
Taille du document: 110 Ko (5 pages).
Confidentialité: fichier public


Aperçu du document


29/09/2015___(mise à jour 30/12/2015)

Des ondes électromagnétique qui viennent du système Dynamo au
centre de la terre ?
Dabord l’équation du champ B_0 (le champ B induit).

Si on prend l’équation de l’induction MHD
solutions de l’induction

Rot ( E 0 )=

∂ B0
Δ B0
= Rot (v ∧ B)+
et qu’on applique les
∂t
μ0 σ

E=v ∧ B dans l’équation de l’induction (Maxwell/Faraday) , sa donne :

−∂ B 0
Δ B0
∂ B0
=
→ Δ B 0 =2μ 0 σ
.
∂t
−2μ0 σ
∂t

(Sa aide à trouver la solution du champ de vitesse dans l’équation Navier-Stokes)
____________________________________________________

Solution d’ondes électromagnétique (J=0).
Solution en E.
On a
ROT ( E )=

−Δ B
2 μ0 σ &

ROT ( B)=μ0 ϵ0

∂B

∂t

Δ B=−2μ0 σ ROT ( E)

Ensuite on applique le rotationnel sur les 2 membres.
ROT (Δ B)=Δ ROT ( B)=−2μ0 σ ROT ROT ( E)=−2 μ0 σ [(Grad ( D iv ( E))−Δ E)]

Div(E)=0 donc l’équation se simplifie en éliminant le laplacien , et on a une solution de E.
ROT ( B)=−2μ 0 σ E=−ϵ0 μ0

∂E

∂t

E=

ϵ ∂E
2σ ∂t

Solution en B .
∂E
On a ROT ( B)=ϵ0 μ0 ∂ t , en remplace E par la solution , sa donne :
ROT ( B)=

ϵ0² μ0 ∂ ² E
ensuite on applique le rotationnel au 2 membres .
2 σ ∂ t²

Rot Rot ( B)=Grad [ D iv ( B)]−Δ B=

simplifie −Δ B=
ROT ( E )=

ϵ 0 ² μ0 ∂ ² Rot ( E )
Et comme Div(B)=0 , l’équation se

∂ t²

ϵ0 ² μ0 ∂ ² Rot ( E)
, maintenant on remplace Rot(E) par

∂ t²
−Δ B
2 μ0 σ , sa donne

−Δ B=

−ϵ 0 ² ∂ ² Δ B
.
4 σ ² ∂ t²

reste à sortir le laplacien et simplifié .

−Δ B=Δ

−ϵ 0 ² ∂ ² B

4 σ ² ∂ t²

B=

ϵ0 ² ∂ ² B
.
4σ ² ∂ t²

On peut facilement vérifié que si les champ

E=

ϵ ∂E
&
2σ ∂t

B=

ϵ0 ² ∂ ² B
4 σ ² ∂ t²

bien des solutions de l’équation des ondes électromagnétique → Δ X =ϵ0 μ0

existent , se sont
∂² X
∂ t²

_____________________________________________________
Remarque : si c’est correct du point de vue théorique et qu’on captent rien à la surface c’est peut
étre que les longueurs d’onde sont soit trop petite pour remonter ou alors trop grande pour étre
détecter par des matériaux conducteur classique .
_____________________________________________________
https://www.youtube.com/watch?v=xbhZGChxZpE
_______________________________________________

Mon ptit Bullard

j’aime bien se petit model , c’est surement un des élément d’un systeme à énergie
libre qu’il faut trouver .
On a une spire qui renvoie un champ magnétique vers un disque conducteur qui
fourni un courant par effet hall qui induit le champ magnétique ___ a une certaine
vitesse de rotation le champ B s’auto entretient en posant qu’il y a eu un champ B_0
initial indépendant du système (ou un champ E extérieur qui a généré un courant I_0).
J’ai regardez un peut les informations sur le systeme en terme de champ et comme
c’est un peut compliqué je pense que j’ai simplifié le model .(faut vérifié le
raisonement)
D’abord l’équation du courant qui circule dans le système :
L

dI
= I ( M ω− R)
dt

dans le premier membre on a l’opposé de la force électromotrice induite -e le long de
la courbe fermer (spire + rayon du disque) , et dans le 2ieme membre on peut
exprimer I avec le thm de Gauss .
c.a.d

⃗ et
⃗ . dl
e=−∮ E

I=

dq
∂⃗
E ⃗
=∯ ϵ 0
. ds , et en utilisant le THM de stock on a :
dt
∂t
⃗ ∯ ( M ω−R)ϵ 0 ⃗

⃗ . ds=
−∬ Rot E
E . ds

Dans le système , le flux a travers la surface fermer contient le flux du premier
membre donc on peut éliminé les intégrale .
Sa donne l’équation du champ électrique induit __(concernant la vitesse angulaire
c’est une variable indépendante pour le moment qu’il faudra coupler plus tard au
temp).
(1)

∂⃗
E
Rot ( ⃗
E)=ϵ0 (R− M ω)
∂t

On cherche maintenant l’équation du champ B induit en utilisant les propriété d’un
champ électromagnétique formalisé dans les équations de Maxwell .
−∂ ⃗
B
Rot ( ⃗
E )=

∂t

∂⃗
B
∂⃗
E
=ϵ 0 ( M ω− R)

∂t
∂t

∂⃗
B
∂⃗
E
∂t
qu’on peut reporter
ϵ0
=
∂ t (M ω− R)

dans l’équation Maxwell Ampère pour avoir l’équation du champ B induit en
question .
∂⃗
B
] .
∂t

(2) ( M ω−R) Rot ( ⃗B)=μ0 [( M ω−R) ⃗J +

(Si la logique est bonne , cette représentation est plus adapter ) .
_________________________________________
On peut peut étre simplifié encore l’équation en B :
On a


∂⃗
B
∂E
=ϵ 0 ( M ω−R)
donc on peut éliminer la dérivé partiel pour avoir la
∂t
∂t

relation ⃗B=ϵ0 ( M ω− R) ⃗E
R
On voit que les champs sont dans le mème sens lorsque ω0 = M donc c’est à partir

de se moment que commence l’effet dynamo.


B
Pour avoir l’équation du champ B on reporte ⃗E = ϵ (M ω− R) dans l’équation de
0
l’induction et comparer avec la valeur du rotationel de B dans l’équation de Maxwell
Ampère .

Rot ( ⃗
B)

−∂ ⃗
B

Sa donne ϵ ( M ω−R) = ∂ t
0

→ Rot ( ⃗B )=−ϵ0 ( M ω−R)

∂⃗
B
∂⃗
E
=μ0 J +ϵ0 μ O
∂t
∂t



B
⃗=
on remplace E par E
pour avoir l’équation
ϵ0 (M ω− R)
−ϵ20 (M ω−R)2

∂⃗
B
∂⃗
B
=ϵ 0 ( M ω− R)μ0 J +ϵ0 μO
on regroupe et on a
∂t
∂t

l’intégral du champ B
∂⃗
B
[ϵ0 μ0 +ϵ ( M ω− R) ]
=ϵ 0 ( R− M ω)μ0 ⃗J →
∂t
2
0

2


B=−∫

μ0 ( M ω−R) ⃗J (t )
μ0 +ϵ 20 [ M ω−R]2

dt

comme la vitesse angulaire reste une donné extérieur au systeme ..(c’est une
convention qui vient d’une action extérieur) .., on peut sortir le facteur de l’intégral .
μ 0 ( M ω−R)
→ ⃗B =−
2

μ0 +ϵ 0 [ M ω−R]2

∫ ⃗J (t )dt

____________________________________
Résumé sur l'éssentiel du systeme de Bullard
(peut être des erreurs de calculs algébrique , faut vérifié et corriger)

∂E
Rot ( ⃗
E )=−ϵ 0 (M ω−R)
∂t
∂⃗
B
Rot ( ⃗
B)=−ϵ 0 (M ω−R)
∂t

−μ 0 ⃗
J
∂⃗
E
= 2
∂t ϵ0 ( M ω− R)2 +ϵ0 μ 0

J
∂⃗
B −μ0 ( M ω−R) ⃗
=
∂ t ϵ 0(M ω−R)2+μ0


B=(M ω−R) ⃗
E

_________________________________________
Couplage du systeme
…......
(Suite plus tard)
Le conseiller du Führer
FB


Aperçu du document Ondes-MHD.pdf - page 1/5

Aperçu du document Ondes-MHD.pdf - page 2/5

Aperçu du document Ondes-MHD.pdf - page 3/5

Aperçu du document Ondes-MHD.pdf - page 4/5

Aperçu du document Ondes-MHD.pdf - page 5/5




Télécharger le fichier (PDF)


Ondes-MHD.pdf (PDF, 110 Ko)

Télécharger
Formats alternatifs: ZIP Texte



Documents similaires


ondes mhd
hirnfunktion aktivit t
hirnfunktion aktivit t
hirnfunktion aktivit t
hirnfunktion aktivit t 1
hirnfunktion aktivit t

Sur le même sujet..




🚀  Page générée en 0.006s