Carpe Diem Report.pdf


Aperçu du fichier PDF carpe-diem-report.pdf - page 4/8

Page 1 2 3 4 5 6 7 8



Aperçu texte


1 Sphere

5
4
3

2 Ellipsoid separable

5

A2 Carpediem
A2 Zoubab
BFGS
BIPOP-CMA-ES

4
3

2

2

1

1

15 instances

5

2

5 Linear slope

0.0.0

10

20

40

0 15 instances
2

3

0.0.0

5

10

20

6

5
4

3

3

2

2
1

5

10

20

40

15 instances

0 target Df: 1e-8
2
3

5

6

7 Step-ellipsoid

0.0.0

10

20

40

0 target Df: 1e-8
2
3
6

5

5

4

4

4

3

3

3

2

2

2

1

1

1

15 instances
0 target Df: 1e-8

15 instances
0 target Df: 1e-8

2

3

0.0.0

5

10

20

40

10 Ellipsoid

6

2

3

10

20

40

11 Discus

6

0 target Df: 1e-8
2
3

5

6

12 Bent cigar

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

15 instances
0 target Df: 1e-8

15 instances
0 target Df: 1e-8

15 instances
0 target Df: 1e-8

3

0.0.0

5

10

20

40

13 Sharp ridge

6

2

3

0.0.0

5

10

20

40

14 Sum of different powers

6

2

3

10

20

40

15 Rastrigin

6

5

6

5

5

5

4

4

3

3

3

3

2

2

2

2

1

1

1

1

15 instances
0 target Df: 1e-8

15 instances
0 target Df: 1e-8

15 instances
0 target Df: 1e-8

0.0.0

10

20

40

17 Schaffer F7, condition 10

6

2

3

0.0.0

5

10

20

40

18 Schaffer F7, condition 1000

6

2

3

10

20

40

5
4

3

3

2

2

1

1

0 target Df: 1e-8
2
3

40

20

40

20

40

0.0.0

10

0.0.0

5

10

20 Schwefel x*sin(x)

6

6

5
4

20

15 instances

0.0.0

5

19 Griewank-Rosenbrock F8F2

7

10

16 Weierstrass

4

5

40

0.0.0

0 target Df: 1e-8
2
3

5

3

20

15 instances

0.0.0

5

4

2

10

15 instances

0.0.0

5

5

2

0.0.0

5

8 Rosenbrock original

5

40

9 Rosenbrock rotated

5
4

15 instances

0.0.0

6 Attractive sector

6

1

target Df: 1e-8

0 target Df: 1e-8
2
3

4 Skew Rastrigin-Bueche separ

7
6

1

15 instances

0 target Df: 1e-8
2
3

3 Rastrigin separable

7
6

5

5

4

4

3

3

15 instances

0 target Df: 1e-8
2
3

5

10

20

40

21 Gallagher 101 peaks

6

0 target Df: 1e-8
2
3

0.0.0

5

10

20

40

22 Gallagher 21 peaks

6

1

1

15 instances

0.0.0

2

2

15 instances
0 target Df: 1e-8

2

3

5

5

5

4

4

5

10

20

40

23 Katsuuras

6

4

15 instances

0.0.0

0 target Df: 1e-8
2
3
7

0.0.0

5

10

20

40

24 Lunacek bi-Rastrigin

6
5
4

3

3

3

2

2

2

1

1

1

3

15 instances

0 target Df: 1e-8
2
3

15 instances

0.0.0

5

10

20

40

0 target Df: 1e-8
2
3

15 instances

0.0.0

5

10

20

40

A2 Carpediem
A2 Zoubab
1
BFGS
BIPOP-CMA-ES
15 instances
0.0.0
0 target Df: 1e-8
2
3
5
10
2

0 target Df: 1e-8
2
3

0.0.0

5

10

20

40

20

40

Figure 1: Average running time (aRT in number of f -evaluations as log10 value), divided by dimension for
target function value 10−8 versus dimension. Slanted grid lines indicate quadratic scaling with the dimension.
Different symbols correspond to different algorithms given in the legend of f1 and f24 . Light symbols give the
maximum number of function evaluations from the longest trial divided by dimension. Black stars indicate
a statistically better result compared to all other algorithms with p < 0.01 and Bonferroni correction number
of dimensions (six). Legend: ○: A2 Carpediem, ♢: A2 Zoubab, ⋆: BFGS, ▽: BIPOP-CMA-ES