DiagrammesBinairesL V .pdf



Nom original: DiagrammesBinairesL_V.pdf
Titre: Un système chimique est un système thermodynamique formé de plusieurs constituants A i et siège d’une ou plusieurs réactions c
Auteur: HP registered user

Ce document au format PDF 1.4 a été généré par Acrobat PDFMaker 8.0 pour Word / Acrobat Distiller 8.0.0 (Windows), et a été envoyé sur fichier-pdf.fr le 08/12/2014 à 15:45, depuis l'adresse IP 41.137.x.x. La présente page de téléchargement du fichier a été vue 500 fois.
Taille du document: 636 Ko (16 pages).
Confidentialité: fichier public


Aperçu du document


1
DIAGRAMMES BINAIRES
LIQUIDE-VAPEUR

I.Généralités
I.1.Cadre de l’étude
Les systèmes binaires étudiés comportent deux constituants chimiques notés A1 et
A2. Il peut y avoir :
● une phase gazeuse considérée comme parfaite
● une ou deux phases liquides selon que les constituants A1 et A2 sont miscibles
ou non
● une phase gazeuse en équilibre avec une ou deux phases liquide
Les deux variables physiques considérées sont la température et la pression.
L’influence de la pression ne peut être négligée car, si elle agit peu sur les phases
condensées, il n’en est pas de même en phase gazeuse.
L’étude comportera donc deux types de diagrammes : diagrammes isothermes et
diagrammes isobares.

I.2.Variables de composition
Dans une phase, la composition est déterminée par les fractions molaires ou les
fractions massiques.
La fraction molaire du constituant Ai dans la phase gazeuse est :

yi =

nig
n1g + n2g

La fraction molaire du constituant Ai dans la phase liquide est :

xi =

nil
n1l + n2l

Les fractions molaires sont telles que x1 + x2 = 1 et y1 + y2 = 1.

I.3.Données expérimentales
Les données expérimentales consistent en l’étude de la composition des phases en
équilibre : analyse de la pression pour les diagrammes isothermes et analyse
thermique pour les diagrammes isobares.

_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

2
1/Analyse de la pression
L’analyse de la pression consiste à suivre l’évolution de la
pression en fonction du temps t lors de la compression des
mélanges ou des corps purs.

2/Analyse thermique
L’analyse thermique consiste à suivre l’évolution de la
température en fonction du temps t lors du chauffage des
mélanges ou des corps purs.

La vaporisation est un phénomène endothermique : pour un
mélange binaire que l’on chauffe, l’augmentation de
température devient moins rapide et la courbe d’analyse thermique présente une
rupture de pente lors de l’apparition des premières bulles de vapeur. Par contre,
lorsque le mélange est entièrement gazeux, l’augmentation de température
redevient plus rapide et une nouvelle rupture de pente est observée.

II.Miscibilité totale à l’état liquide
II.1.Mélange liquide idéal
1/Généralités
La cohésion des liquides est due aux interactions de faible énergie entre les
molécules les constituant : liaisons de Van der Waals et liaisons hydrogène.
Lorsque ces interactions entre molécules A1, entre molécules A2 et entre molécules
A1 et A2 sont du même type et de même ordre de grandeur, les liquides sont
généralement miscibles et forment une seule phase.
On peut citer comme exemples de solutions idéales : l’air liquide (O2 + N2), le
mélange dibromoéthane-dibromopropane, le mélange hexane-heptane.

2/Diagramme binaire isotherme
a/obtention et description du diagramme
On considère le mélange hexane-heptane à 5 °C. Les deux molécules sont de
structure chimique voisine et on pourra donc considérer le mélange comme idéal.
Les courbes d’analyse de pression permettent d’obtenir le diagramme isotherme :
l’ensemble des points Ai et Ci dans un diagramme donnant la pression en fonction
de la fraction molaire globale de l’hexane. On obtient pour un mélange idéal un
fuseau simple.

_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

3

L’ensemble des points Ai constitue une courbe appelée courbe de rosée alors que
l’ensemble des points Ci constitue une courbe appelée courbe d’ébullition.
Ces deux courbes divisent le diagramme en trois domaines :
● au-dessus de la courbe d’ébullition on a la seule phase liquide
● au-dessous de la courbe de rosée on a la phase vapeur
● entre les deux courbes on a un système diphasé avec équilibre liquide-vapeur

b/équation des courbes
Les deux constituants A1 et A2 d’un mélange idéal obéissent à la loi de Raoult :

p i = xi p i*
-Equation de la courbe d’ébullition : p = f(x2)

p = p1 + p 2 = x1 p1* + x 2 p 2*
p = (1 − x 2 ) p1* + x 2 p 2*
p = x 2 ( p 2* − p1* ) + p1*
La courbe d’ébullition est donc une droite.
-Equation de la courbe de rosée : p = g(y2)
D’après la loi de Dalton : pi = y i P
On a donc pour le constituant A2 :
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

4
p 2 = x 2 p 2* = y 2 P
P
x2 = y 2 *
p2
En reportant dans l’expression précédente :

P = y2

P *
( p 2 − p1* ) + p1*
*
p2

p1* p 2*
P= *
p 2 − y 2 ( p 2* − p1* )
La courbe de rosée est donc un arc d’hyperbole.

c/lecture du diagramme
On constate sur le diagramme que la pression d’équilibre P est toujours comprise
entre p1* et p2*. Une pression P (telle que p1* < P < p2*) coupe les deux courbes en
deux points L et V.
L indique la composition de la phase liquide et V celle de la phase vapeur. On
constate que x2V > x2L, c’est-à-dire que la phase vapeur est plus riche en A2 que la
phase liquide. Comme p2* > p1*, A2 est le constituant le plus volatil (celui dont la
pression de vapeur saturante est la plus élevée ou celui qui bout à la température la
plus faible). On en déduit donc que :
La phase vapeur est plus riche que la phase liquide en constituant le plus volatil
On considère un liquide binaire, de composition initiale x2L, sous une pression PA
élevée. On diminue, à T constante, la pression P. Lorsque le point représentatif
atteint le point L, toujours de composition x2L, apparaît la première bulle de vapeur
dont la composition est x2V (point V du graphe)
Remarque : cette étude montre également qu’une méthode pour faire bouillir, à
température constante, un liquide binaire consiste à diminuer la pression audessus du liquide (par exemple à l’aide d’une trompe à eau).

d/variance du système
On utilise la formule générale :

v = (c − R − Q ) + 2 − Φ
Plusieurs cas se présentent :
● le système est à l’état liquide :

v = ( 2 − 0 − 1) + 2 − 1 = 2 si T est fixée

Pour déterminer l’état du liquide, il faut connaître sa pression et sa composition.
● le système est biphasé :

v = ( 4 − 2 − 1) + 2 − 2 = 1 si T est fixée

_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

5
Il suffit de connaître la pression pour déterminer les compositions du liquide et de
la vapeur en équilibre
● le système est à l’état de vapeur :

v = ( 2 − 0 − 1) + 2 − 1 = 2 si T est fixée

Pour déterminer l’état de la vapeur, il faut connaître sa pression et sa composition.

3/Diagramme binaire isobare
a/obtention et description du diagramme
On considère le mélange eau-méthanol sous P = 1,013 bar.
Les courbes d’analyse thermique permettent d’obtenir le diagramme isobare. :
l’ensemble des points Ai et Ci dans un diagramme donne la température en fonction
de la fraction molaire globale en méthanol.

L’ensemble des points Ai constitue la courbe de rosée alors que l’ensemble des
points Ci constitue la courbe d’ébullition.
Ces deux courbes divisent le diagramme en trois domaines :
● au-dessous de la courbe d’ébullition on a la seule phase liquide
● au-dessus de la courbe de rosée on la phase vapeur
● entre les deux courbes on a un système biphasé avec équilibre liquide-vapeur

b/équation des courbes
Les équilibres du système sont représentés par les équations bilans :

_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

6
A1 (l ) = A1 (v)
B1 (l ) = B1 (v)
En supposant les gaz parfaits et l’état standard des constituants du mélange liquide
idéal rapportés au corps pur, la constante de l’équilibre physico-chimique s’écrit
pour chacun des équilibres :

K1o =

y1 P
x1 P°

et

K 2o =

y2 P
x 2 P°

L’enthalpie de réaction associée est pratiquement égale à l’enthalpie standard
d’ébullition ΔvapHio du corps pur i. Pour chaque équilibre, la relation de Vant’Hoff
s’écrit :

o
i

d ln K
=
dT

yi P
)
Δ vap H io
x i P°
=
dT
RT 2

d (ln

Par intégration de l’état où le constituant i est pur (xi = 1, yi = 1, T = Ti*) à l’état xi, yi,
T, on obtient :
o
T Δ vap H i dT
yi P
∫xi= yi=1 d ln xi P° = ∫Ti* R T 2
xi , yi

Soit en supposant ΔvapHio constant dans l’intervalle de température et P = P° :
o
y i Δ vap H i 1
1
ln =
( *− )
xi
R
Ti Ti

Cette relation écrite pour A1 et A2, avec les relations x1 + x2 = 1 et y1 + y2 = 1, permet
de connaître les équations des courbes d’ébullition et de rosée.

4/Théorème des moments chimiques appliqué aux systèmes biphasés
Ce théorème permet, lorsque les deux phases
sont en équilibre, de relier la quantité de matière
présente dans chacune des phases avec la
composition de chacune des phases.

La conservation de la quantité de matière s’écrit
pour le constituant A2 :

n 2v + n2L = n V x 2V + n L x 2L = (nV + n L ) x 2
n V ( x 2 − x 2V ) = n L ( x 2L − x 2 )
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

7
On obtient la relation cherchée, dite relation des moments :

n L x 2 − x 2V MV
= L
=
ML
nV
x2 − x2
n L ML = n V MV
Remarque : si l’on dispose d’un diagramme utilisant les fractions massiques, la
relation reste exploitable en substituant les quantités de matière par les masses des
phases en présence.

II.2.Mélange liquide réel
1/Généralités
On sait que dans le cadre des mélanges liquides réels, il convient de corriger la loi
de Raoult en introduisant un coefficient d’activité γi non dimensionné pour tenir
compte de l’écart à l’idéalité du comportement du constituant Ai.
Dans ce cas, l’allure des diagrammes isotherme et isobare est différente de celle
d’un mélange idéal.
Tous les diagrammes binaires relèvent alors d’un des deux cas suivants :
● la courbe d ébullition et la courbe de rosé ne présentent pas d’extrémum. Le
diagramme a alors une allure semblable à celui d’un mélange idéal avec cependant
des déformations plus ou moins importantes.

C’est l’exemple du mélange eau-ammoniac : la courbe d’ébullition du diagramme
isotherme n’est plus une droite et l’aspect du fuseau dans le diagramme isobare
diffère notablement de celui du mélange idéal (le fuseau est élargi).
Les écarts à l’idéalité sont dus aux liaisons hydrogène dissymétriques existant entre
les deux constituants.

● la courbe d’ébullition et la courbe de rosé présentent un extrémum commun : il
s’agit d’un cas fréquent traduisant un comportement qui s’écarte notablement du
cas idéal.
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

8
Le mélange dont la composition correspond à l’extrémum est appelé azéotrope ou
mélange azéotropique (étymologiquement azéotrope signifie « bouillir sans
changement de composition »).
On distingue deux types de diagrammes : azéotrope avec un minimum de
température à pression constante (eau + butan-2-ol) et azéotrope avec un maximum
de température à pression constante (acide nitrique + eau).

2/Azéotropie
D’après le théorème de Gibbs-Konovalov (1881) : un
extrémum de pression à température constante ou un
extrémum de température à pression constante entraîne
l’identité de composition des phases liquide et vapeur.
L’azéotrope ne doit pas être confondu avec un corps pur
comme on pourrait le croire puisque vapeur et liquide ont
même composition. En réalité, la composition de
l’azéotrope varie avec la pression totale.
On peut étudier la courbe d’analyse thermique du
mélange azéotropique. De C à A, la variance vaut (il existe
une relation supplémentaire : x2 = y2) :

v = ( 4 − 2 − 1) + 2 − 2 = 1
Donc, à pression donnée, la température est fixée comme pour le changement d’état
d’un corps pur.

II.3.Distillation
1/Distillation des binaires sans azéotrope
a/distillation élémentaire
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

9
Un liquide de composition x2 est chauffé ; en M1 apparaît la première bulle de
vapeur de composition y2 (point V1). La vapeur est plus riche en constituant le plus
volatil (ici A2) que le liquide avec lequel elle est en équilibre. Cette vapeur condensée
donne un liquide, le distillat, plus riche en A2 que le liquide de composition x2, alors
que dans le ballon le liquide s’en est appauvri. Les deux constituants ne sont
cependant pas complètement séparés.

b/distillation fractionnée :
Une distillation fractionnée est une suite de distillations élémentaires dans un
appareil unique appelé colonne à distiller, par exemple une colonne de Vigreux
dans laquelle les pointes de verre favorisent les équilibres successifs liquide-vapeur.

La vapeur émise par le liquide en ébullition (point V) se condense au bas de la
colonne (point L1). Cette opération étant exothermique, ce liquide L1 va bouillir en
donnant une vapeur V1, laquelle est condensée …Au fur et à mesure que l’on monte
dans la colonne, on a une vapeur de plus en plus riche en A1, constituant le plus
volatil. Si l’efficacité de la colonne est suffisante, on obtient en haut de colonne la
vapeur constituée de A1 pur qu’il suffit de condenser à l’aide d’un réfrigérant.
Les opérations écrites s’effectuent automatiquement dans une colonne à distiller
qui, dans l’industrie, est constituée par une colonne à plateaux. Il s’agit d’une
grande tour cylindrique surmontant la chaudière (ou bouilleur) dans laquelle le
liquide est en ébullition : cette colonne contient un grand nombre de plateaux dont
le but est d’assurer les équilibres successifs liquide-vapeur par suite de la
condensation, ébullition du fluide.
Soit deux plateaux successifs. Chaque plateau est le siège d’un double flux de
matière :
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

10
● d’une part, la vapeur provenant du plateau inférieur et enrichie en A1, constituant
le plus volatil. Celle-ci, en se condensant, entraîne l’ébullition du contenu liquide
du plateau.
● d’autre part, le liquide provenant du plateau supérieur et plus riche en A2.

2/Distillation des binaires avec azéotrope
Dans ce cas, on ne peut isoler la totalité des constituants A1 et A2.
Pour un azéotrope à maximum, en M le distillat est constitué d’une partie du
constituant A1, en M’ d’une partie de A2, et dans les deux cas le ballon contient le
mélange azéotropique.
Pour un azéotrope à minimum, dans les deux cas le distillat est le mélange
azéotropique et le ballon contient en M une partie du constituant A1 et en M’ d’une
partie de A2.

II.4.Osmométrie
Lorsqu'une solution est séparée du solvant pur par une paroi
perméable aux molécules de solvant, mais non aux molécules de
soluté, le solvant tend à traverser cette paroi semi perméable et le
système n'est pas à l'équilibre.
o
Pour solvant pur : μ S ( l ) = μ S ( l )
o
Pour solution : μ S ( l ) = μ S ( l ) + RT ln x S

L'égalité des potentiels chimiques ne peut se produire que si la pression au-dessus
de la solution augmente. On aura alors en appelant π la pression osmotique :
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

11

μ So( l ) (T , P ) = μ So( l ) (T , P + π ) + RT ln x S
μ So( l ) (T , P ) = μ So( l ) (T , P) + Vmπ + RT ln x S
D'où finalement :

− ln x S = − ln(1 − x A ) =

πVm
RT

D'autre part pour une solution diluée : − ln x S ≈ x A
D'où :

xA =
Avec : x A ≈

πVm
RT

nA
V
et Vm =
nS
nS

On obtient finalement la relation :

π=

RT
nA
V

La mesure de la pression osmotique permet donc de déterminer les masses molaires
des solutés, en particulier celles des macromolécules

III.Miscibilité nulle à l’état liquide
III.1.Courbes d’analyse thermique et variance
On considère le mélange binaire toluène (A1)-eau (A2) sous P = 1,013 bar.
Les courbes de refroidissement 1 et 2 sont celles des corps purs : on y retrouve les
paliers de changement d’état.
Lors du refroidissement des mélanges gazeux 3 et 4 :
- en A3 (et A4) apparaissent les premières gouttes de toluène liquide
- de A3 à C3 (et de A4 à C4), la quantité de toluène liquide augmente à
température variable
- -de C3 à E3 (et de C4 à E4), le toluène et l’eau se condensent à température
constante
- au-delà de E3 (et de E4), les deux liquides se refroidissent
Lors du refroidissement du mélange gazeux 6, on observe des phénomènes
analogues, l’eau remplaçant le toluène.
Lors du refroidissement du mélange gazeux 5 :
- en A5, confondu avec C5, apparaissent simultanément les deux liquides
- de C5 à E5, il y a condensation simultanée des deux liquides à température
constante
- au-delà de E5, les deux liquides se refroidissent
Le mélange ayant cette composition est appelé mélange hétéroazéotropique.
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

12

On peut résumer les valeurs de la variance pour les différents domaines des
courbes d’analyse thermique selon le type de mélange.

Lorsque le gaz est en équilibre avec un liquide (par exemple de A3 à C3) :

v = (3 − 1 − 0 ) + 2 − 2 = 2
A pression donnée, la température doit encore être fixée pour déterminer un état
d’équilibre du système : la température varie lors de la condensation d’un gaz.
Lorsque le gaz est en équilibre avec deux liquides (de Ci à Ei) :

v = ( 4 − 2 − 0) + 2 − 3 = 1
A pression donnée, la température ne peut plus varier : elle est fixée lors de la
condensation des deux liquides.
Cette conclusion reste valide pour le palier isotherme du mélange
hétéroazéotropique.
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

13
III.2.Diagramme binaire isobare
L’ensemble des points Ai, Ci et Ei déterminés par les courbes d’analyse thermique
constitue le diagramme binaire isobare liquide-vapeur.
L’ensemble des points Ai est une courbe, formée de deux branches, appelée courbe
de rosée.
Le point H , point d’intersection des deux branches de la courbe de rosée, est appelé
point hétéroazéotropique ou hétéroazéotrope : le mélange correspondant à cette
composition particulière, appelé mélange hétéroazéotropique, change d’état
physique à température constante.
L’ensemble des segments C1E1, E1E2 et C2E2 constitue la courbe d’ébullition, dans le
sens où, au-dessous de cette courbe, tout est liquide.

III.3.Lecture du diagramme
On peut appliquer le théorème des moments dans les différents domaines
biphasés :

L’évolution de la composition des phases lors du refroidissement du système est
proposée ci-dessous :

III.4.Equations des courbes
Les gaz sont supposés parfaits et les liquides non miscibles.
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

14
Les équations établies dans le cas des mélanges idéaux restent applicables en
écrivant que les fractions molaires sont égales à 1 pour les liquides purs (x1 = 1 ou
x2 = 1).
On obtient donc :

Δ vap H 1o (T1* ) 1 1
ln y1 =
( *− )
R
T1 T
Δ vap H 2o (T2* ) 1 1
ln y 2 =
( *− )
R
T2 T

III.5.Miscibilité partielle
1/Courbe de démixtion
Lorsque les écarts à la loi de Raoult sont trop importants, la solubilité de A2 dans A1
est limitée à une valeur maximale (point A1sat) et réciproquement. Ces valeurs sont
fonctions de la température à P fixée.

La solubilité croît avec la température et au-delà d'une certaine température
critique, on retrouve une solution homogène L.
La courbe séparant le domaine diphasé (A1sat + A2sat) du domaine monophasé est
dite courbe de démixtion.

2/Diagramme isobare usuel
La courbe de démixtion est interrompue par le
phénomène de changement d'état.

III.6.Application : entraînement à la vapeur d’eau
Il s’agit d’extraire un composé, en général organique,
de température d’ébullition élevée et de masse molaire
importante, d’un milieu réactionnel. En effet, lorsque
la substance à isoler a une température d'ébullition élevée, sa purification par
distillation fractionnée (même sous pression réduite) présente des risques de
dégradation.
Le choix d'un solvant d'entraînement non miscible (donc l'eau convient bien pour
les produits organiques) permet de provoquer l'ébullition du mélange
hétéroazéotropique à une température TH inférieure à celle des deux corps purs
(donc < 100 °C sous Patm). Cette méthode s'appelle hydrodistillation ou
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

15
entraînement à la vapeur : elle est très utilisée dans la chimie des parfums
notamment.

On injecte de la vapeur d’eau dans le milieu réactionnel. Le composé organique
chauffé par la vapeur d’eau est distillé avec elle. Il est nécessaire que la quantité
d’eau introduite soit telle que la composition en eau soit supérieure à celle de
l’hétéroazéotrope.

On chauffe, sous pression atmosphérique, un mélange de composition en eau
supérieure à celle de l’hétéroazéotrope et représenté par la composition xo.
L’ébullition est observée à la température TH inférieure aux températures
d’ébullition des corps purs (évite toute dégradation thermique du composé extrait).
Il existe alors trois phases : eau liquide pur, C liquide pur et vapeur constituée
d’eau et de C ; cette phase vapeur a la composition de l’hétéroazéotrope. Le système
étant monovariant, la température reste constante et égale à TH tant que les trois
phases coexistent en équilibre.
La phase vapeur est plus riche en C que le mélange initial. La composition de la
phase vapeur reste constante et égale à xH tout au cours de l’entraînement à la
vapeur. Pour cela, le mélange liquide s’appauvrit au fur et à mesure en C.
Quand le corps organique a été entièrement entraîné, le liquide restant est
exclusivement de l’eau (et les impuretés solubles dans l’eau) et la température
s’élève et atteint 100 °C (cela permet de repérer la fin de l’entraînement).
Le distillat recueilli se sépare en deux couches non miscibles qui sont séparées par
décantation. Le composé C est purifié ultérieurement.
_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08

16
Intérêt : obtenir un composé non miscible à l’eau purifié tout en ne dépassant pas
la température d’ébullition de l’eau ce qui évite leur dégradation thermique.
Exemple : on peut citer le cas de l'aniline (T2* = 192 °C) à purifier lors de sa
synthèse. On profite alors de son insolubilité dans l'eau, et par injection de vapeur
d'eau en son sein, on extrait le mélange tétéroazéotropique à TH < 100 °C < T2* et de
composition x2,H. Comme la composition de la vapeur reste constante et qu'elle est
éliminée au fur et à mesure, et comme d'autre part l'eau est toujours en excès dans
le mélange liquide, on entraîne ainsi toute l'aniline (rendement → 100 %). Il suffit
ensuite de récupérer le distillat issu de la recondensation du mélange
hétéroazéotropique et de séparer l'eau et l'aniline par simple décantation.

_________________________________________________________________________________________________________________
CHIMIE SPE PC1 – POINCARE 15/11/08



Télécharger le fichier (PDF)









Documents similaires


resumee binaires solide liquide
diagrammesbinairesl v
equilibre liquide vapeur
controle continu n 2 diagramme binaire
diagramme lecot lejeune
manuel de froid

Sur le même sujet..